Abstract

Waste heat recovery from power plants and industries requires a new type of electricity generator and related technological developments. The current research work is aimed at the design of a multi-kilowatt thermoacoustic electric generator, which can be employed as the bottoming cycle of a gas turbine power plant or for industrial waste heat recovery. The proposed device converts thermal energy into acoustic power and subsequently uses a piezoelectric alternator to convert acoustic power into electricity. The challenge in designing such a device is that it has to be acoustically balanced. The performance of the device is greatly affected by numerous parameters such as frequency of the traveling acoustic wave, heat exchanger parameters, regenerator dimensions, and acoustic feedback loop. The proposed device is a lab-scale demonstration targeted to produce few kilowatts of electric power from a 20 kWth heat source. DeltaEC software is used to achieve the acoustically balanced configuration of the device. The DeltaEC model outcomes are used to arrive at the optimized design of the device and its components. The analytical method, the optimized geometrical dimensions of thermoacoustic components, and the minimum required conditions of heat source input are presented in this paper.

References

1.
Ross
,
C.
,
2010
, “
Overview of Waste Heat Recovery Technologies for Power and Heat
.” http://www.northwestchptap.org/NwChpDocs/WHTP%20Conference∼ 2010-09-29%20B.pdf, Accessed January 26, 2020.
2.
Heppenstall
,
T.
,
1998
, “
Advanced Gas Turbine Cycles for Power Generation: A Critical Review
,”
Appl. Therm. Eng.
,
18
(
9–10
), pp.
837
846
. 10.1016/S1359-4311(97)00116-6
3.
Timmer
,
M. A. G.
,
Block
,
K. D.
, and
Van der Meer
,
T. H.
,
2018
, “
Review on the Conversion of Thermoacoustic Power Into Electricity
,”
J. Acoust. Soc. Am.
,
143
(
2
), p.
841
.
4.
Swift
,
G. W.
,
2017
,
Thermoacoustics: A Unifying Perspective for Some Engines and Regenerators
, 2nd ed.,
Springer
,
New York
.
5.
LM 6000 PF+ Engine Specifications
,”
Baker Hughes—A GE Company
. https://www.bhge.com/lm6000-pf, Accessed July 20, 2019.
6.
Hartley
,
R. V. L.
,
1951
, “
Electric Power Source
,” U.S. Patent No. 2,549,464.
7.
Marrison
,
A. W.
, and
Heights
,
B. N.
,
1958
, “
Heat-Controlled Acoustic Wave System
,” U.S. Patent No. 2,836,033.
8.
Ceperley
,
P. H.
,
1979
, “
A Pistonless Stirling Engine—The Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
66
(
5
), pp.
1508
1513
. 10.1121/1.383505
9.
Martini
,
W. R.
,
1983
, “
Stirling Engine Design Manual
,”
NASA Technical Report, p. DOE/NASA/3194-1; NASA-CR-168088
.
10.
Bi
,
T.
,
Wu
,
Z.
,
Zhang
,
L.
,
Yu
,
G.
,
Luo
,
E.
, and
Dai
,
W.
,
2017
, “
Development of a 5 kW Traveling-Wave Thermoacoustic Electric Generator
,”
Appl. Energy
,
185
(
2
), pp.
1335
1361
.
11.
Wang
,
K.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2017
, “
Thermoacoustic Stirling Power Generation From LNG Cold Energy and Low-Temperature Waste Heat
,”
Energy
,
127
(
1
), pp.
280
290
. 10.1016/j.energy.2017.03.124
12.
Wheatley
,
J. C.
,
Swift
,
G. W.
, and
Migliori
,
A.
,
1986
, “
Thermoacoustic Magnetohydrodynamic Electrical Generator
,” U.S. Patent No. 4,599,551.
13.
Migliori
,
A.
, and
Swift
,
G. W.
,
1988
, “
Liquid-Sodium Thermoacoustic Engine
,”
Appl. Phys. Lett.
,
55
(
5
), pp.
355
357
. 10.1063/1.99913
14.
Blok
,
K. D.
,
Owczarek
,
P.
, and
Francois
,
M.-X.
,
2014
, “
Bi-Directional Turbines for Converting Acoustic Wave Power Into Electricity
,”
9th PAMIR International Conference on Fundamental and Applied MHD
,
Riga, Latvia
,
June 16–20
.
15.
Keolian
,
R. M.
,
2011
, “
Final Report DOE Project DE-FC26-04NT42113 Truck Thermoacoustic Generator and Chiller, October 2004–March 2011
.
16.
Keolian
,
R. M.
, and
Backhaus
,
S.
,
2011
, “
Energy Conversion Through Thermoacoustics and Piezoelectricity
,”
J. Acoust. Soc. Am.
,
130
(
4
, Pt. 2), p.
2504
. 10.1121/1.3654976
17.
Khalij
,
L.
,
Gautrelet
,
C.
, and
Guillet
,
A.
,
2015
, “
Fatigue Curves of a Low Carbon Steel Obtained From Vibration Experiments With an Electrodynamic Shaker With an Electrodynamic Shaker
,”
Mater. Des.
,
86
(
1
), pp.
640
648
. 10.1016/j.matdes.2015.07.153
18.
LANL
, “
Design Environment for Low-Amplitude Thermoacoustic Energy Conversion—DeltaEC Version 6.4b2.7
,”
Los Alamos National Laboratory, 04 December 2017
. www.lanl.gov/thermoacoustics
19.
Ward
,
W. C.
, and
Swift
,
G. W.
,
1994
, “
Design Environment for Low-Amplitude Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
95
(
6
), pp.
3671
3672
. 10.1121/1.409938
20.
Keolian
,
R. M.
,
Wuthrich
,
J. W.
, and
Bastyr
,
K. J.
,
2010
, “
Thermoacoustic Piezoelectric Generator
,” U.S. Patent No. 7,772,746.
21.
Keolian
,
R. M.
,
Bastyr
,
K. J.
, and
Brady
,
J. F.
,
2019
,
Monocoque Shell and Tube Heat Exchanger
,
World Intellectual Property Organization
,
USA
.
22.
Zohuri
,
B.
,
2017
,
Compact Heat Exchangers—Selection, Application, Design and Evaluation
,
Springer International Publishing
,
Switzerland
.
23.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchanger
, 3rd ed.,
Krieger Publishing Company
,
FL
.
24.
Hesselgreaves
,
J. E.
,
2001
,
Compact Heat Exchanger—Selection, Design and Operation
, 2nd ed.,
Pergamon
,
Oxford, UK
.
25.
Somu
,
S.
,
Lacoste
,
D.
,
Saxena
,
S.
,
William
,
R. L.
, and
Keolian
,
R. M.
,
2020
, “
Design Optimization of a Multi-kW Thermoacoustic Electric Generator Using DeltaEC Model
,”
ASME Turbo Expo 2020—Turbomachinery Technical Conference and Exposition
,
London, UK
,
Sept. 21–25
, pp.
1
9
.
You do not currently have access to this content.