Abstract

In this study, the performance of parabolic trough collector (PTC) integrated with an organic Rankine cycle (ORC) is investigated to find the optimum operating scenarios and to assess the exergy destruction at different components of the system. A commercial PTC LS-2 model with Therminol VP-1 as heat transfer fluid was integrated with an ORC that was examined for its thermal and exergetic performance using different organic fluids. It was found that every fluid has an optimum pressure and temperature level at which it works better than other fluids. R134a (tetrafluoroethane, CH2FCF3) showed the best performance for the turbine inlet temperature range from 340 K to 440 K regarding the achieved energy and exergy efficiencies. At a temperature of 362.8 K and a pressure of 2750 kPa, R134a showed the highest energy efficiency of 8.55% and exergy efficiency of 21.84% with the lowest mass flowrate required in ORC. Energy efficiency of other fluids, namely, R245fa (pentafluoropropane, CF3CH2CHF2), n-pentane, and toluene, was less than 5%. On the other hand, toluene exhibited thermal efficiency of 23.5% at a turbine inlet temperature of 550 K and a pressure of 2500 kPa, while the exergy efficiency was 62.89% at solar irradiation of 1 kW/m2.

References

1.
Blanco
,
M.
, and
Santigosa
,
L. R.
,
2017
,
Advances in Concentrating Solar Thermal Research and Technology
,
Woodhead Publishing
,
Cambridge
, pp.
3
25
.
2.
Barlev
,
D.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Innovation in Concentrated Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
95
(
10
), pp.
2703
2725
. 10.1016/j.solmat.2011.05.020
3.
Chachin Vishal
,
C. V.
,
Krishnan
,
J.
,
Venkatesan
,
G.
,
Samson Packiaraj Raphael
,
V.
, and
Jalihal
,
P.
,
2021
, “
Dynamic Analysis of Direct Steam Generating Parabolic Trough Collector System
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031304
. 10.1115/1.4049185
4.
Hasanuzzaman
,
M.
,
Malek
,
A. B. M. A.
,
Islam
,
M. M.
,
Pandey
,
A. K.
, and
Rahim
,
N. A.
,
2016
, “
Global Advancement of Cooling Technologies for PV Systems: A Review
,”
Sol. Energy
,
137
, pp.
25
45
. 10.1016/j.solener.2016.07.010
5.
Anon
,
2008
, “
Concentrating Solar Power Projects
,” https://solarpaces.nrel.gov/sites/default/files/project-export.csv, Accessed December 15, 2018.
6.
Ballestrín
,
J.
,
Burgess
,
G.
, and
Cumpston
,
J.
,
2012
, “Heat Flux and Temperature Measurement Technologies for Concentrating Solar Power (CSP),”
Concentrating Solar Power Technology
,
K.
Lovegrove
, and
W.
Stein
, ed.,
Woodhead Publishing Series in Energy
,
Philadelphia, PA
, pp.
577
601
, e4.
7.
Islam
,
M. T.
,
Huda
,
N.
,
Abdullah
,
A. B.
, and
Saidur
,
R.
,
2018
, “
A Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
987
1018
. 10.1016/j.rser.2018.04.097
8.
Kasaeian
,
A.
,
Tabasi
,
S.
,
Ghaderian
,
J.
, and
Yousefi
,
H.
,
2018
, “
A Review on Parabolic Trough/Fresnel Based Photovoltaic Thermal Systems
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
193
204
. 10.1016/j.rser.2018.03.114
9.
Manikandan
,
G. K.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2019
, “
Enhancing the Optical and Thermal Efficiency of a Parabolic Trough Collector—A Review
,”
Appl. Energy
,
235
, pp.
1524
1540
. 10.1016/j.apenergy.2018.11.048
10.
Pantaleo
,
A. M.
,
Camporeale
,
S. M.
,
Sorrentino
,
A.
,
Miliozzi
,
A.
,
Shah
,
N.
, and
Markides
,
C. N.
,
2018
, “
Hybrid Solar-Biomass Combined Brayton/Organic Rankine-Cycle Plants Integrated With Thermal Storage: TechnoEconomic Feasibility in Selected Mediterranean Areas
,”
Renew. Energy
,
10
, pp.
1
19
. 10.1016/j.renene.2018.08.022
11.
Aguilar-Jiménez
,
J. A.
,
Velázquez
,
N.
,
Acuña
,
A.
,
Cota
,
R.
,
González
,
E.
,
González
,
L.
,
López
,
R.
, and
Islas
,
S.
,
2018
, “
Techno-Economic Analysis of a Hybrid PV-CSP System With Thermal Energy Storage Applied to Isolated Microgrids
,”
Sol. Energy
,
174
, pp.
55
65
. 10.1016/j.solener.2018.08.078
12.
Renno
,
C.
,
2018
, “
Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes
,”
Energies
,
11
(
11
), p.
2960
. 10.3390/en11112960
13.
Xiao
,
M.
,
Tang
,
L.
,
Zhang
,
X.
,
Lun
,
I. Y. F.
, and
Yuan
,
Y.
,
2018
, “
A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems
,”
Energies
,
11
(
12
), p.
3416
. 10.3390/en11123416
14.
Ben Youssef
,
W.
,
Maatallah
,
T.
,
Menezo
,
C.
, and
Ben Nasrallah
,
S.
,
2018
, “
Modeling and Optimization of a Solar System Based on Concentrating Photovoltaic/Thermal Collector
,”
Sol. Energy
,
170
, pp.
301
313
. 10.1016/j.solener.2018.05.057
15.
Riverola
,
A.
,
Moreno
,
A.
, and
Chemisana
,
D.
,
2018
, “
Performance of a Dielectric PVT Concentrator for Building-Façade Integration
,”
Opt. Exp.
,
26
(
18
), p.
A892
. 10.1364/OE.26.00A892
16.
Rahbar
,
K.
,
Riasi
,
A.
,
Khatam Bolouri Sangjoeei
,
H.
, and
Razmjoo
,
N.
,
2019
, “
Heat Recovery of Nano-Fluid Based Concentrating Photovoltaic Thermal (CPV/T) Collector With Organic Rankine Cycle
,”
Energy Convers. Manage.
,
179
, pp.
373
396
. 10.1016/j.enconman.2018.10.066
17.
Bekiloğlu
,
H. E.
,
Bedir
,
H.
, and
Anlaş
,
G.
,
2020
, “
Organic Rankine Cycle Optimization With Explicit Designs of Evaporator and Radial Inflow Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072103
. 10.1115/1.4046942
18.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
. 10.1115/1.4023098
19.
Yamankaradeniz
,
N.
,
Bademlioglu
,
A. H.
, and
Kaynakli
,
O.
,
2018
, “
Performance Assessments of Organic Rankine Cycle With Internal Heat Exchanger Based on Exergetic Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102001
. 10.1115/1.4040108
20.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2016
, “
Thermo-Economic Comparisons Between Solar Steam Rankine and Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
105
, pp.
862
875
. 10.1016/j.applthermaleng.2016.04.055
21.
Landelle
,
A.
,
Tauveron
,
N.
,
Haberschill
,
P.
,
Revellin
,
R.
, and
Colasson
,
S.
,
2017
, “
Organic Rankine Cycle Design and Performance Comparison Based on Experimental Database
,”
Appl. Energy
,
204
, pp.
1172
1187
. 10.1016/j.apenergy.2017.04.012
22.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Assessment of Linear Solar Concentrating Technologies for Greek Climate
,”
Energy Convers. Manage.
,
171
, pp.
1502
1513
. 10.1016/j.enconman.2018.06.076
23.
Solapure
,
P. V. S.
,
Ithape
,
S. S.
,
Gugale
,
S. M.
,
Deshmukh
,
P. D.
, and
Bankar
,
S. R.
,
2018
, “
Parabolic Trough Solar Concentrator
,”
Int. J. Manage. Technol. Eng.
,
8
(
IX
), pp.
1275
1284
.
24.
Ghazouani
,
K.
,
Skouri
,
S.
,
Bouadila
,
S.
, and
Guizani
,
A. A.
,
2018
, “
Thermal Study of Solar Parabolic Trough Concentrator
,”
2018 9th International Renewable Energy Congress (IREC)
,
Hammamet, Tunisia
,
Mar. 20–22
, pp.
1
4
.
25.
Cascio
,
E. L.
,
Ma
,
Z.
, and
Schenone
,
C.
,
2018
, “
Performance Assessment of a Novel Natural Gas Pressure Reduction Station Equipped With Parabolic Trough Solar Collectors
,”
Renew. Energy
,
128
, pp.
177
187
. 10.1016/j.renene.2018.05.058
26.
Mehrpooya
,
M.
,
Tosang
,
E.
, and
Dadak
,
A.
,
2018
, “
Investigation of a Combined Cycle Power Plant Coupled With a Parabolic Trough Solar Field and High Temperature Energy Storage System
,”
Energy Convers. Manage.
,
171
, pp.
1662
1674
. 10.1016/j.enconman.2018.07.001
27.
Hofmann
,
M.
, and
Tsatsaronis
,
G.
,
2016
, “
Exergy-Based Study of a Binary Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062003
. 10.1115/1.4033303
28.
Quoilin
,
S.
,
Van Den Broek
,
M.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renew. Sustain. Energy Rev.
,
22
, pp.
168
186
. 10.1016/j.rser.2013.01.028
29.
Hosseinpour
,
J.
,
Chitsaz
,
A.
,
Eisavi
,
B.
, and
Yari
,
M.
,
2018
, “
Investigation on Performance of an Integrated SOFC-Goswami System Using Wood Gasification
,”
Energy
,
148
, pp.
614
628
. 10.1016/j.energy.2018.01.162
30.
Shankar
,
R.
, and
Srinivas
,
T.
,
2018
, “
Performance Investigation of Kalina Cooling Cogeneration Cycles
,”
Int. J. Refrig.
,
86
, pp.
163
185
. 10.1016/j.ijrefrig.2017.11.019
31.
Zhang
,
X.
,
He
,
M.
, and
Zhang
,
Y.
,
2012
, “
A Review of Research on the Kalina Cycle
,”
Renew. Sustain. Energy Rev.
,
16
(
7
), pp.
5309
5318
. 10.1016/j.rser.2012.05.040
32.
Sarkar
,
J.
,
2015
, “
Review and Future Trends of Supercritical CO2 Rankine Cycle for Low-Grade Heat Conversion
,”
Renew. Sustain. Energy Rev.
,
48
, pp.
434
451
. 10.1016/j.rser.2015.04.039
33.
Moloney
,
F.
,
Almatrafi
,
E.
, and
Goswami
,
D. Y.
,
2017
, “
Working Fluid Parametric Analysis for Regenerative Supercritical Organic Rankine Cycles for Medium Geothermal Reservoir Temperatures
,”
Energy Procedia
,
129
, pp.
599
606
. 10.1016/j.egypro.2017.09.216
34.
Kim
,
Y. M.
,
Sohn
,
J. L.
, and
Yoon
,
E. S.
,
2017
, “
Supercritical CO2 Rankine Cycles for Waste Heat Recovery From Gas Turbine
,”
Energy
,
118
, pp.
893
905
. 10.1016/j.energy.2016.10.106
35.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2019
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
. 10.1115/1.4044562
36.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
. 10.1115/1.3120381
37.
Girgin
,
I.
, and
Ezgi
,
C.
,
2017
, “
Design and Thermodynamic and Thermoeconomic Analysis of an Organic Rankine Cycle for Naval Surface Ship Applications
,”
Energy Convers. Manage.
,
148
, pp.
623
634
. 10.1016/j.enconman.2017.06.033
38.
Quoilin
S.
, and
Lemort
V.
, “
Labothap—ORCNext,” Laboratoire de Thermodynamique, Université de Liège, Belgium
, http://www.labothap.ulg.ac.be/cmsms/index.php?page=orcnext-2, Accessed January 26, 2019.
39.
Quoilin
,
S.
,
2008
,
An Introduction to Thermodynamics Applied to Organic Rankine Cycle
,
STG Int., MIT
, https://orbi.uliege.be/handle/2268/138797, Accessed January 26, 2019.
40.
Dai
,
X.
,
Shi
,
L.
,
An
,
Q.
, and
Qian
,
W.
,
2016
, “
Screening of Hydrocarbons as Supercritical ORCs Working Fluids by Thermal Stability
,”
Energy Convers. Manage.
,
126
, pp.
632
637
. 10.1016/j.enconman.2016.08.024
41.
Invernizzi
,
C. M.
,
Iora
,
P.
,
Manzolini
,
G.
, and
Lasala
,
S.
,
2017
, “
Thermal Stability of n-Pentane, Cyclo-Pentane and Toluene as Working Fluids in Organic Rankine Engines
,”
Appl. Therm. Eng.
,
121
, pp.
172
179
. 10.1016/j.applthermaleng.2017.04.038
42.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Analytical Expression of Parabolic Trough Solar Collector Performance
,”
Designs
,
2
(
1
), p.
9
. 10.3390/designs2010009
43.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
323
370
.
44.
Kalogirou
,
S. A.
,
2016
,
Advances in Solar Heating and Cooling
,
Woodhead Publishing Series in Energy: Number 102
,
Cambridge, MA
, pp.
63
80
.
45.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
A Detailed Exergetic Analysis of Parabolic Trough Collectors
,”
Energy Convers. Manage.
,
149
, pp.
275
292
. 10.1016/j.enconman.2017.07.035
46.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
. 10.1016/j.applthermaleng.2016.11.201
47.
Al-Sulaiman
,
F. A.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Collectors Integrated With Combined Steam and Organic Rankine Cycles
,”
Energy Convers. Manage.
,
77
, pp.
441
449
. 10.1016/j.enconman.2013.10.013
48.
Lienhard
,
I. V.
, and
John
,
H.
,
2008
,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston Press
,
Cambridge, MA
.
49.
Ferraro
,
V.
,
Imineo
,
F.
, and
Marinelli
,
V.
,
2013
, “
An Improved Model to Evaluate Thermodynamic Solar Plants With Cylindrical Parabolic Collectors and Air Turbine Engines in Open Joule e Brayton Cycle
,”
Energy
,
53
(
C
), pp.
323
331
. 10.1016/j.energy.2013.02.051
50.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manage.
,
106
, pp.
268
281
. 10.1016/j.enconman.2015.09.045
51.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
. 10.1016/S0038-092X(03)00226-3
52.
Sun
,
W.
,
Yue
,
X.
, and
Wang
,
Y.
,
2017
, “
Exergy Efficiency Analysis of ORC (Organic Rankine Cycle) and ORC-Based Combined Cycles Driven by Low-Temperature Waste Heat
,”
Energy Convers. Manage.
,
135
, pp.
63
73
. 10.1016/j.enconman.2016.12.042
53.
EES: Engineering Equation Solver|F-Chart Software: Engineering Software
”, http://fchart.com/ees/, Accessed November 18, 2018.
54.
Dudley
,
V. E.
,
Evans
,
L. R.
, and
Matthews
,
C. W.
,
1995
, “
Test Results, Industrial Solar Technology Parabolic Trough Solar Collector
,”
USA
https://doi.org/10.2172/211613.
55.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,”
USA
http://dx.doi.org/10.2172/15004820.
56.
Therminol VP1|Synthetic Heat Transfer Fluids
” [Online], https://www.Therminol.com/Products/Therminol-VP1, Accessed November 18, 2018.
57.
Al-Abbadi
,
N. M.
,
2005
, “
Wind Energy Resource Assessment for Five Locations in Saudi Arabia
,”
Renew. Energy
,
30
(
10
), pp.
1489
1499
. 10.1016/j.renene.2004.11.013
58.
Dabwan
,
Y. N.
,
2013
, “
Thermodynamic Performance Assessment of a Novel Waste Heat Based Triple Effect Refrigeration Cycle
,”
Master’s thesis
,
King Fahd University of Petroleum
,
Dhahran
.
59.
Maps and Graphs
”, https://rratlas.energy.gov.sa/RRMMDataPortal/en/MapTool, Accessed March 26, 2019.
You do not currently have access to this content.