Abstract

The challenging engineering intricacies related to improving efficiency of a gas turbine engine come with the need to maximize the internal cooling of the turbine blade to withstand the high turbine inlet temperature. Understanding the fluid mechanics and heat transfer of internal blade cooling is, therefore, of paramount importance. This paper presents the impact of swirl cooling flow on the heat transfer of a gas turbine chamber to understand the mechanics of internal blade cooling. The focus is the continuous swirl flow that must be maintained via nonstop injection of tangential flow, whereby swirl flow is generated. The impact of swirl flow considers the velocity fields measured using stereo particle image velocimetry, the wall temperature and the convective heat transfer coefficient measured by liquid crystals. Flow behavior and heat transfer at three Reynolds numbers ranging from 7000 to 21,000 and the average profiles of axial and radial, magnitudes of velocity, and Nusselt numbers are given to research the direct effects of the circular chamber shape. Heat transfer results are measured in a second circular chamber and collected continuously after the system is heat soaked to the required temperature. As part of the results relatively low heat transfer rates were observed near the upstream end of the circular chamber, resulting from a low momentum swirl flow as well as crossflow effects. The thermochromic liquid crystal heat transfer results exemplify how the Nu measured favorably at the midstream of the chamber and values decline downstream.

References

1.
Glezer
,
B.
,
Moon
,
H. K.
, and
O'Connell
,
T.
,
1996
, “
A Novel Technique for the Internal Blade Cooling
,”
International Gas Turbines and Aeroengine Congress and Exhibition
,
Birmingham, UK
,
June 10–13
.
2.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
804
813
. 10.1115/1.2836734
3.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
1
26
. 10.2514/2.1964
4.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
,
1998
, “
Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow
,”
International Gas Turbines & Aeroengine Congress & Exhibition
,
Stockholm, Sweden
,
June 2–5, 1998
.
5.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
374
385
. 10.1115/1.555458
6.
Zhang
,
J.
,
Dong
,
L.
, and
Zhou
,
L.
,
2003
, “
Simulation of Swirling Turbulent Flows and Heat Transfer in an Annular Duct
,”
Numer. Heat Transfer A
,
44
(
6
), pp.
591
609
. 10.1080/716100515
7.
Moon
,
H. K.
,
O'Connell
,
T.
, and
Glezer
,
B.
,
1998
, “
Heat Transfer Enhancement in a Circular Channel Using Lengthwise Continuous Tangential Injection
,”
Heat Transfer
,
6
, pp.
559
564
. 10.1615/ihtc11.1310
8.
Kreith
,
F.
, and
Margolis
,
D.
,
1959
, “
Heat Transfer and Friction in Turbulent Vortex Flow
,”
Appl. Sci. Res. A
,
8
, pp.
1
17
. 10.1007/bf00411769
9.
Camci
,
C.
, and
Glezer
,
B.
,
1995
,
Color Response Modification of Encapsulated Liquid Crystals Used in Rotating Disk Heat Transfer Studies
,
ASME
, pp.
1
10
.
10.
Thambu
,
R.
,
Babinchak
,
B. T.
,
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1999
, “
Flow in a Simple Swirl Chamber With and Without Controlled Inlet Forcing
,”
Exp. Fluids
,
26
(
4
), pp.
347
357
. 10.1007/s003480050298
11.
Yelishala
,
S. C.
,
Kannaiyan
,
K.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
, and
Sadr
,
R.
,
2020
, “
Thermodynamic Study on Blends of Hydrocarbons and Carbon Dioxide as Zeotropic Refrigerants
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082304
. 10.1115/1.4045930
12.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
. 10.1115/1.4042720
13.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
. 10.1115/1.4033590
14.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
. 10.1115/1.4047600
15.
Zhang
,
G.
,
Liu
,
J.
,
Sundén
,
B.
, and
Xie
,
G.
,
2020
, “
Improvements of the Adiabatic Film Cooling by Using Two-Row Holes of Different Geometries and Arrangements
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122101
. 10.1115/1.4047329
16.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitailah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
. 10.1115/1.4042824
17.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
33
. 10.1155/2013/275653
18.
Chang
,
F.
, and
Dhir
,
V. K.
,
1994
, “
Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes
,”
Heat Fluid Flow
,
15
(
5
), pp.
346
356
. 10.1016/0142-727X(94)90048-5
19.
Wieneke
,
B.
,
2014
, “
Generic A-Posteriori Uncertainty Quantification for PIV Vector Fields by Correlation Statistics
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 7–10
.
20.
Galeana
,
D.
, and
Beyene
,
A.
,
2018
, “
Experimental Study of Swirl Cooling Flow on a Circular Chamber Using 3-D Stereo-PIV
,”
Power & Energy Conference & Exhibition
,
Lake Buena Vista, FL
,
June 24–28
.
You do not currently have access to this content.