Abstract

In reservoir development plans, well placement optimization is usually performed to better sweep oil and reduce the amount of trapped oil inside reservoirs. Long-term optimization of well placement requires multiple times simulation of reservoirs which makes these problems cumbersome, especially when a large number of decision variables exist. Cumulative oil production (COP) or net present value (NPV) functions are commonly used as the objective function of optimal enhance oil recovery projects. Use of these functions requires a full-time reservoir simulation and their convergence could be difficult with the chance to be trapped in local optimum solutions. In this study, the novel proportionally distributed streamlines (PDSLs) target function is proposed that can be minimized to reach the optimal well placement. PDSL can be estimated even without full-time reservoir simulation. PDSL tries to direct the appropriate number of streamlines toward the regions with larger amount of oil in the shortest time and hence can improve oil recovery. Particle swarm optimization (PSO) method linked to an in-house streamline-based reservoir simulator is implemented to optimize well placement of water-flooding problems in a two-dimensional heterogeneous reservoir model.

References

1.
Dudley
,
B.
,
2018
,
BP Statistical Review of World Energy
,
British Petroleum
,
London
.
2.
Yue
,
W.
, and
Wang
,
J. Y.
,
2015
, “
Feasibility of Waterflooding for a Carbonate Oil Field Through Whole-Field Simulation Studies
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064501
. 10.1115/1.4030401
3.
Ahmadpour
,
M.
,
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2016
, “
Numerical Simulation of Two-Phase Flow in Fractured Porous Media Using Streamline Simulation and IMPES Methods and Comparing Results With a Commercial Software
,”
J. Cent. South Univ.
,
23
(
10
), pp.
2630
2637
. 10.1007/s11771-016-3324-5
4.
Bai
,
Y. H.
,
Li
,
J. C.
, and
Zhou
,
J. F.
,
2006
, “
Effects of Physical Parameter Range on Dimensionless Variable Sensitivity in Water Flooding Reservoirs
,”
Acta Mech. Sin.
,
22
(
5
), pp.
385
391
. 10.1007/s10409-006-0001-1
5.
Pourabdollah
,
K.
,
2018
, “
Process Design of Cyclic Water Flooding by Real-Time Monitoring
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112701
. 10.1115/1.4040525
6.
Zhang
,
Y.
,
Wu
,
J.
,
Xie
,
M.
, and
Hu
,
H.
,
2019
, “
Optimized Cyclic Water Injection Strategy for Oil Recovery in Low-Permeability Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012905
. 10.1115/1.4040751
7.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2013
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
. 10.1115/1.4025843
8.
Qin
,
J.
,
Han
,
H.
, and
Liu
,
X.
,
2015
, “
Application and Enlightenment of Carbon Dioxide Flooding in the United States of America
,”
Pet. Explor. Dev.
,
42
(
2
), pp.
232
240
. 10.1016/S1876-3804(15)30010-0
9.
Hirasaki
,
G. J.
,
Miller
,
C. A.
, and
Puerto
,
M.
,
2011
, “
Recent Advances in Surfactant EOR
,”
SPE J.
,
16
(
4
), pp.
889
907
.
10.
Shangping
,
G.
,
Yanzhang
,
H.
,
Yaren
,
H.
,
Juan
,
Z.
, and
Yongmin
,
C.
,
1989
, “
Porous Flow With Physico-Chemical Processes—Microscopic Study
,”
Acta Mech. Sin.
,
5
(
1
), pp.
1
10
. 10.1007/BF02486680
11.
Zhang
,
Z.
, and
Li
,
J.
,
2016
, “
Process, Mechanism and Impacts of Scale Formation in Alkaline Flooding by a Variable Porosity and Permeability Model
,”
Acta Mech. Sin.
,
32
(
3
), pp.
406
421
. 10.1007/s10409-015-0554-y
12.
Li
,
X.
,
Liu
,
Y.
,
Tang
,
J.
, and
Li
,
S.
,
2009
, “
Dissipative Particle Dynamics Simulation of Wettability Alternation Phenomena in the Chemical Flooding Process
,”
Acta Mech. Sin.
,
25
(
5
), pp.
583
587
. 10.1007/s10409-009-0247-5
13.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
. 10.1115/1.4029669
14.
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2017
, “
Particle Swarm Optimization of Thermal Enhanced Oil Recovery From Oilfields With Temperature Control
,”
Appl. Therm. Eng.
,
123
(
1
), pp.
658
669
. 10.1016/j.applthermaleng.2017.05.109
15.
Liang
,
G.
,
Liu
,
S.
,
Shen
,
P.
,
Liu
,
Y.
, and
Luo
,
Y.
,
2016
, “
A New Optimization Method for Steam-Liquid Level Intelligent Control Model in Oil Sands Steam-Assisted Gravity Drainage (SAGD) Process
,”
Pet. Explor. Dev.
,
43
(
2
), pp.
301
307
. 10.1016/S1876-3804(16)30034-9
16.
Doranehgard
,
M. H.
, and
Siavashi
,
M.
,
2018
, “
The Effect of Temperature Dependent Relative Permeability on Heavy Oil Recovery During Hot Water Injection Process Using Streamline-Based Simulation
,”
Appl. Therm. Eng.
,
129
(
Supplement C
), pp.
106
116
. 10.1016/j.applthermaleng.2017.10.002
17.
Guyaguler
,
B.
, and
Horne
,
R.
,
2000
, “
Optimization of Well Placement
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
64
70
. 10.1115/1.483164
18.
Salmachi
,
A.
,
Bonyadi
,
M. R.
,
Sayyafzadeh
,
M.
, and
Haghighi
,
M.
,
2014
, “
Identification of Potential Locations for Well Placement in Developed Coalbed Methane Reservoirs
,”
Int. J. Coal Geol.
,
131
(
1
), pp.
250
262
. 10.1016/j.coal.2014.06.018
19.
Jansen
,
J.
,
2011
, “
Adjoint-Based Optimization of Multi-Phase Flow Through Porous Media—A Review
,”
Comput. Fluids
,
46
(
1
), pp.
40
51
. 10.1016/j.compfluid.2010.09.039
20.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2013
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
. 10.1115/1.4007767
21.
Azamipour
,
V.
,
Assareh
,
M.
, and
Mittermeir
,
G. M.
,
2017
, “
An Improved Optimization Procedure for Production and Injection Scheduling Using a Hybrid Genetic Algorithm
,”
Chem. Eng. Res. Des.
,
131
(
1
), pp.
557
570
. 10.1016/j.cherd.2017.11.022
22.
Azamipour
,
V.
,
Assareh
,
M.
,
Dehghani
,
M. R.
, and
Mittermeir
,
G. M.
,
2016
, “
An Efficient Workflow for Production Allocation During Water Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032902
. 10.1115/1.4034808
23.
Tavallali
,
M. S.
,
Karimi
,
I. A.
,
Teo
,
K. M.
,
Baxendale
,
D.
, and
Ayatollahi
,
S.
,
2013
, “
Optimal Producer Well Placement and Production Planning in an Oil Reservoir
,”
Comput. Chem. Eng.
,
55
(
Supplement C
), pp.
109
125
. 10.1016/j.compchemeng.2013.04.002
24.
Wang
,
X.
,
Haynes
,
R. D.
, and
Feng
,
Q.
,
2016
, “
A Multilevel Coordinate Search Algorithm for Well Placement, Control and Joint Optimization
,”
Comput. Chem. Eng.
,
95
(
Supplement C
), pp.
75
96
. 10.1016/j.compchemeng.2016.09.006
25.
Zhang
,
Y.
,
Lu
,
R.
,
Forouzanfar
,
F.
, and
Reynolds
,
A. C.
,
2017
, “
Well Placement and Control Optimization for WAG/SAG Processes Using Ensemble-Based Method
,”
Comput. Chem. Eng.
,
101
(
Supplement C
), pp.
193
209
. 10.1016/j.compchemeng.2017.02.020
26.
Gulick
,
K. E.
, and
McCain
,
W. D.
, Jr.
,
1998
, “
Waterflooding Heterogeneous Reservoirs: An Overview of Industry Experiences and Practices
,”
International Petroleum Conference and Exhibition of Mexico
,
Villahermosa, Mexico
,
Mar. 3–5
, Society of Petroleum Engineers.
27.
Zhang
,
L.
,
Kou
,
Z.
,
Wang
,
H.
,
Zhao
,
Y.
,
Dejam
,
M.
,
Guo
,
J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-Wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
(
1
), pp.
104
120
. 10.1016/j.petrol.2018.03.038
28.
Ding
,
S.
,
Lu
,
R.
,
Xi
,
Y.
,
Wang
,
S.
, and
Wu
,
Y.
,
2019
, “
Well Placement Optimization Using Direct Mapping of Productivity Potential and Threshold Value of Productivity Potential Management Strategy
,”
Comput. Chem. Eng.
,
121
(
1
), pp.
327
337
. 10.1016/j.compchemeng.2018.11.013
29.
Kou
,
Z.
, and
Dejam
,
M.
,
2019
, “
Dispersion Due to Combined Pressure-Driven and Electro-Osmotic Flows in a Channel Surrounded by a Permeable Porous Medium
,”
Phys. Fluids
,
31
(
5
), p.
056603
. 10.1063/1.5092199
30.
Pouladi
,
B.
,
Keshavarz
,
S.
,
Sharifi
,
M.
, and
Ahmadi
,
M. A.
,
2017
, “
A Robust Proxy for Production Well Placement Optimization Problems
,”
Fuel
,
206
(
1
), pp.
467
481
. 10.1016/j.fuel.2017.06.030
31.
Zhao
,
X.
,
Jiang
,
B.
,
Xu
,
Q.
,
Liu
,
J.
,
Zhao
,
Y.
, and
Duan
,
P.
,
2016
, “
Well Pattern Design and Optimal Deployment for Coalbed Methane Development
,”
Pet. Explor. Dev.
,
43
(
1
), pp.
89
96
. 10.1016/S1876-3804(16)30010-6
32.
He
,
D.
,
Jia
,
A.
,
Ji
,
G.
,
Wei
,
Y.
, and
Tang
,
H.
,
2013
, “
Well Type and Pattern Optimization Technology for Large Scale Tight Sand Gas, Sulige Gas Field, NW China
,”
Pet. Explor. Dev.
,
40
(
1
), pp.
84
95
. 10.1016/S1876-3804(13)60008-7
33.
Forouzanfar
,
F.
, and
Reynolds
,
A.
,
2013
, “
Well-Placement Optimization Using a Derivative-Free Method
,”
J. Pet. Sci. Eng.
,
109
(
1
), pp.
96
116
. 10.1016/j.petrol.2013.07.009
34.
Litvak
,
M. L.
,
Gane
,
B. R.
,
Williams
,
G.
,
Mansfield
,
M.
,
Angert
,
P. F.
,
Macdonald
,
C. J.
,
McMurray
,
L. S.
,
Skinner
,
R. C.
, and
Walker
,
G. J.
,
2007
, “
Field Development Optimization Technology
,”
SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 26–28
.
35.
Onwunalu
,
J. E.
, and
Durlofsky
,
L. J.
,
2010
, “
Application of a Particle Swarm Optimization Algorithm for Determining Optimum Well Location and Type
,”
Comput. Geosci.
,
14
(
1
), pp.
183
198
. 10.1007/s10596-009-9142-1
36.
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
Y.
,
Li
,
M.
,
Yao
,
J.
,
Li
,
L.
, and
Lee
,
J.
,
2016
, “
Smart Well Pattern Optimization Using Gradient Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012901
. 10.1115/1.4031208
37.
Nwankwor
,
E.
,
Nagar
,
A. K.
, and
Reid
,
D. C.
,
2013
, “
Hybrid Differential Evolution and Particle Swarm Optimization for Optimal Well Placement
,”
Comput. Geosci.
,
17
(
2
), pp.
249
268
. 10.1007/s10596-012-9328-9
38.
Guyaguler
,
B.
,
Horne
,
R. N.
,
Rogers
,
L.
, and
Rosenzweig
,
J. J.
,
2002
, “
Optimization of Well Placement in a Gulf of Mexico Waterflooding Project
,”
SPE Reservoir Evaluation & Engineering
,
5
(
3
), pp.
229
236
.
39.
Siavashi
,
M.
, and
Yazdani
,
M.
,
2018
, “
A Comparative Study of Genetic and Particle Swarm Optimization Algorithms and Their Hybrid Method in Water Flooding Optimization
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102903
. 10.1115/1.4040059
40.
Hongwei
,
C.
,
Qihong
,
F.
,
Xianmin
,
Z.
,
Sen
,
W.
,
Wensheng
,
Z.
, and
Fan
,
L.
,
2019
, “
Well Placement Optimization With Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012902
. 10.1115/1.4040754
41.
Bellout
,
M. C.
,
Echeverría Ciaurri
,
D.
,
Durlofsky
,
L. J.
,
Foss
,
B.
, and
Kleppe
,
J.
,
2012
, “
Joint Optimization of Oil Well Placement and Controls
,”
Comput. Geosci.
,
16
(
4
), pp.
1061
1079
. 10.1007/s10596-012-9303-5
42.
Isebor
,
O. J.
,
Durlofsky
,
L. J.
, and
Ciaurri
,
D. E.
,
2014
, “
A Derivative-Free Methodology With Local and Global Search for the Constrained Joint Optimization of Well Locations and Controls
,”
Comput. Geosci.
,
18
(
1
), pp.
463
482
. 10.1007/s10596-013-9383-x
43.
Humphries
,
T. D.
,
Haynes
,
R. D.
, and
James
,
L. A.
,
2014
, “
Simultaneous and Sequential Approaches to Joint Optimization of Well Placement and Control
,”
Comput. Geosci.
,
18
(
3
), pp.
433
448
. 10.1007/s10596-013-9375-x
44.
Forouzanfar
,
F.
, and
Reynolds
,
A.
,
2014
, “
Joint Optimization of Number of Wells, Well Locations and Controls Using a Gradient-Based Algorithm
,”
Chem. Eng. Res. Des.
,
92
(
7
), pp.
1315
1328
. 10.1016/j.cherd.2013.11.006
45.
Batycky
,
R.
,
Blunt
,
M. J.
, and
Thiele
,
M. R.
,
1997
, “
A 3D Field-Scale Streamline-Based Reservoir Simulator
,”
SPE Reservoir Eng.
,
12
(
04
), pp.
246
254
. 10.2118/36726-PA
46.
Siavashi
,
M.
,
Blunt
,
M. J.
,
Raisee
,
M.
, and
Pourafshary
,
P.
,
2014
, “
Three-Dimensional Streamline-Based Simulation of Non-Isothermal Two-Phase Flow in Heterogeneous Porous Media
,”
Comput. Fluids
,
103
(
1
), pp.
116
131
. 10.1016/j.compfluid.2014.07.014
47.
Park
,
H.-Y.
, and
Datta-Gupta
,
A.
,
2013
, “
Reservoir Management Using Streamline-Based Flood Efficiency Maps and Application to Rate Optimization
,”
J. Pet. Sci. Eng.
,
109
(
1
), pp.
312
326
. 10.1016/j.petrol.2013.06.004
48.
Thiele
,
M. R.
,
Batycky
,
R.
, and
Fenwick
,
D.
,
2010
, “
Streamline Simulation for Modern Reservoir-Engineering Workflows
,”
J. Pet. Technol.
,
62
(
1
), pp.
64
70
. 10.2118/118608-JPT
49.
Datta-Gupta
,
A.
, and
King
,
M.
,
2007
,
Streamline Simulation: Theory and Practice: Society of Petroleum Engineers
,
Society of Petroleum
,
New York
.
50.
Siavashi
,
M.
,
Pourafshary
,
P.
, and
Raisee
,
M.
,
2012
, “
Application of Space–Time Conservation Element and Solution Element Method in Streamline Simulation
,”
J. Pet. Sci. Eng.
,
96
(
1
), pp.
58
67
. 10.1016/j.petrol.2012.08.005
51.
Ahmadpour
,
M.
,
Siavashi
,
M.
, and
Moghimi
,
M.
,
2018
, “
Numerical Simulation of Two-Phase Mass Transport in Three-Dimensional Naturally Fractured Reservoirs Using Discrete Streamlines
,”
Numer. Heat Transfer Part A
,
73
(
7
), pp.
482
500
. 10.1080/10407782.2018.1447200
52.
Mesbah
,
M.
,
Vatani
,
A.
, and
Siavashi
,
M.
,
2018
, “
Streamline Simulation of Water–Oil Displacement in a Heterogeneous Fractured Reservoir Using Different Transfer Functions
,”
Oil Gas Sci. Technol.
,
73
(
1
), p.
14
. 10.2516/ogst/2018004
53.
Mesbah
,
M.
,
Vatani
,
A.
,
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2019
, “
Parallel Processing of Numerical Simulation of Two-Phase Flow in Fractured Reservoirs Considering the Effect of Natural Flow Barriers Using the Streamline Simulation Method
,”
Int. J. Heat Mass Transfer
,
131
(
1
), pp.
574
583
. 10.1016/j.ijheatmasstransfer.2018.11.097
54.
Wang
,
B.
,
Du
,
J.
,
Feng
,
Y.
,
Wang
,
Y.
,
Wang
,
S.
, and
Yang
,
R.
,
2018
, “
An Embedded Grid-Free Approach for Near Wellbore Streamline Simulation
,”
SPE J.
,
23
(
2
), pp.
567
588
.
55.
Wen
,
T.
,
Thiele
,
M.
,
Ciaurri
,
D. E.
,
Aziz
,
K.
, and
Ye
,
Y.
,
2014
, “
Waterflood Management Using Two-Stage Optimization with Streamline Simulation
,”
Computational Geosciences
,
18
, pp.
483
504
.
56.
Afshari
,
S.
,
Aminshahidy
,
B.
, and
Pishvaie
,
M. R.
,
2011
, “
Application of an Improved Harmony Search Algorithm in Well Placement Optimization Using Streamline Simulation
,”
J. Pet. Sci. Eng.
,
78
(
3
), pp.
664
678
. 10.1016/j.petrol.2011.08.009
57.
Raniolo
,
S.
,
Bilancio
,
D.
,
Dovera
,
L.
,
Mezzapesa
,
D.
, and
Galibert
,
S.
,
2013
, “
Multiple History Matching and Well Placement Optimisation in a Mature Field Using a Streamline Approach
,”
International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
.
58.
Siavashi
,
M.
,
Tehrani
,
M. R.
, and
Nakhaee
,
A.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052903
. 10.1115/1.4032547
59.
Pollock
,
D. W.
,
1988
, “
Semianalytical Computation of Path Lines for Finite-Difference Models
,”
Groundwater
,
26
(
6
), pp.
743
750
. 10.1111/j.1745-6584.1988.tb00425.x
60.
Engelbrecht
,
A. P.
,
2006
,
Fundamentals of Computational Swarm Intelligence
,
Wiley
,
New York
.
61.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
,
Anchorage, AK
,
May 4–9
, IEEE, pp.
69
73
.
62.
Christie
,
M. A.
, and
Blunt
,
M. J.
,
2001
, “
Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
,”
SPE Reservoir Evaluation & Engineering
,
4
(
4
), pp.
308
317
.
You do not currently have access to this content.