Abstract

Polycrystalline diamond compact (PDC) bit accounts for the most drilling footage in the development of deep and geothermal resources. The goal of this paper is to investigate the PDC cutter-rock interaction and reveal the rock fragmentation mechanism. A series of loading and unloading tests are conducted to obtain the curves of contact force versus penetration displacement. A single practical PDC cutter is fixed on the designed clamping devices that are mounted on the servo experiment system TAW-1000 in the tests. The craters morphology and quantified data were obtained by scanning the fragmented rock specimen using a three-dimensional morphology scanner. Finally, a numerical model is established to get the stress and deformation fields of the rock under a single PDC cutter. The results show that there are two kinds of failure modes, i.e., brittle failure and plastic failure, in the loading process. Marble is more prone to brittle fracture and has the lowest specific energy, followed by shale and granite. The brittle failure in marble mainly occurs behind the cutter while that happens ahead of the cutter for shale. Curves of contact force versus penetration displacement illustrate that a cutter with a back rake angle of 40 deg has a better penetration result than that with a back rake angle of 30 deg. Enhancing loading speed has a positive effect on brittle fragmentation. The distribution of von Mises stress indicates the initiation point and direction, which has a good agreement with the experiment. The research is of great significance for optimizing the PDC bit design and increasing the rate of penetration.

References

References
1.
Yost
,
K.
,
Valentin
,
A.
, and
Einstein
,
H. H.
,
2015
, “
Estimating Cost and Time of Wellbore Drilling for Engineered Geothermal Systems (EGS)–Considering Uncertainties
,”
Geothermics
,
53
, pp.
85
99
. 10.1016/j.geothermics.2014.04.005
2.
Sveinbjornsson
,
B. M.
, and
Thorhallsson
,
S.
,
2014
, “
Drilling Performance, Injectivity and Productivity of Geothermal Wells
,”
Geothermics
,
50
, pp.
76
84
. 10.1016/j.geothermics.2013.08.011
3.
Song
,
C.
,
Chung
,
J.
,
Cho
,
J. S.
, and
Nam
,
Y. J.
,
2018
, “
Optimal Design Parameters of a Percussive Drilling System for Efficiency Improvement
,”
Adv. Mater. Sci. Eng.
,
2018
, pp.
1
13
.
4.
Lundberg
,
B.
, and
Okrouhlik
,
M.
,
2006
, “
Efficiency of a Percussive Rock Drilling Process With Consideration of Wave Energy Radiation Into the Rock
,”
Int. J. Impact Eng.
,
32
(
10
), pp.
1573
1583
. 10.1016/j.ijimpeng.2005.02.001
5.
Wu
,
X.
,
Huang
,
Z.
,
Song
,
H.
,
Zhang
,
S.
,
Cheng
,
Z.
,
Li
,
R.
,
Wen
,
H.
,
Huang
,
P.
, and
Dai
,
X.
,
2019
, “
Variations of Physical and Mechanical Properties of Heated Granite After Rapid Cooling With Liquid Nitrogen
,”
Rock Mech. Rock Eng.
,
52
(
7
), pp.
2123
2139
. 10.1007/s00603-018-1727-3
6.
Menezes
,
P. L.
,
Lovell
,
M. R.
,
Avdeev
,
I. V.
, and
Higgs
,
C. F.
, III
,
2014
, “
Studies on the Formation of Discontinuous Rock Fragments During Cutting Operation
,”
Int. J. Rock Mech. Min. Sci.
,
71
, pp.
131
142
. 10.1016/j.ijrmms.2014.03.019
7.
Ji
,
Z.
,
Shi
,
H.
,
Li
,
G.
, and
Song
,
H.
,
2020
, “
Improved Drifting Oscillator Model for Dynamical Bit-Rock Interaction in Percussive Drilling Under High-Temperature Condition
,”
J. Pet. Sci. Eng.
,
186
, pp.
106772
. 10.1016/j.petrol.2019.106772
8.
Li
,
H.
, and
Misra
,
S.
,
2017
, “
Prediction of Subsurface NMR T2 Distributions in a Shale Petroleum System Using Variational Autoencoder-Based Neural Networks
,”
IEEE Geosci. Remote. Sens. Lett.
,
14
(
12
), pp.
2395
2397
. 10.1109/LGRS.2017.2766130
9.
Zhang
,
H.
,
Song
,
H. P.
,
Kang
,
Y. L.
,
Huang
,
G. Y.
, and
Qu
,
C. Y.
,
2013
, “
Experimental Analysis on Deformation Evolution and Crack Propagation of Rock Under Cyclic Indentation
,”
Rock Mech. Rock Eng.
,
46
(
5
), pp.
1053
1059
. 10.1007/s00603-012-0309-z
10.
Swain
,
M.
, and
Lawn
,
B.
,
1976
, “Indentation Fracture in Brittle Rocks and Glasses,”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
,
Elsevier
,
New York
, pp.
311
319
.
11.
Souissi
,
S.
,
Hamdi
,
E.
, and
Sellami
,
H.
,
2015
, “
Microstructure Effect on Hard Rock Damage and Fracture During Indentation Process
,”
Geotech. Geol. Eng.
,
33
(
6
), pp.
1539
1550
. 10.1007/s10706-015-9920-6
12.
Kou
,
S. Q.
,
Lindqvist
,
P. A.
,
Tang
,
C. A.
, and
Xu
,
X. H.
,
1999
, “
Numerical Simulation of the Cutting of Inhomogeneous Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
36
(
5
), pp.
711
717
. 10.1016/S0148-9062(99)00039-X
13.
Kou
,
S.
,
Liu
,
H.
,
Lindqvist
,
P.-A.
, and
Tang
,
C.
,
2004
, “
Rock Fragmentation Mechanisms Induced by a Drill bit
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
Suppl. 1
), pp.
527
532
. 10.1016/j.ijrmms.2004.03.094
14.
Chen
,
L. H.
, and
Labuz
,
J. F.
,
2006
, “
Indentation of Rock by Wedge-Shaped Tools
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
7
), pp.
1023
1033
. 10.1016/j.ijrmms.2006.03.005
15.
Zhang
,
H.
,
Huang
,
G.
,
Song
,
H.
, and
Kang
,
Y.
,
2012
, “
Experimental Investigation of Deformation and Failure Mechanisms in Rock Under Indentation by Digital Image Correlation
,”
Eng. Fract. Mech.
,
96
, pp.
667
675
. 10.1016/j.engfracmech.2012.09.012
16.
Yoneyama
,
S.
,
Ogawa
,
T.
, and
Kobayashi
,
Y.
,
2007
, “
Evaluating Mixed-Mode Stress Intensity Factors From Full-Field Displacement Fields Obtained by Optical Methods
,”
Eng. Fract. Mech.
,
74
(
9
), pp.
1399
1412
. 10.1016/j.engfracmech.2006.08.004
17.
Rostamsowlat
,
I.
,
Akbari
,
B.
, and
Evans
,
B.
,
2018
, “
Analysis of Rock Cutting Process With a Blunt PDC Cutter Under Different Wear Flat Inclination Angles
,”
J. Pet. Sci. Eng.
,
171
, pp.
771
783
. 10.1016/j.petrol.2018.06.003
18.
Saksala
,
T.
,
2016
, “
Numerical Study of the Influence of Hydrostatic and Confining Pressure on Percussive Drilling of Hard Rock
,”
Comput. Geotech.
,
76
, pp.
120
128
. 10.1016/j.compgeo.2016.02.021
19.
Kitamura
,
M.
, and
Hirose
,
T.
,
2017
, “
Strength Determination of Rocks by Using Indentation Tests With a Spherical Indenter
,”
J. Struct. Geol.
,
98
, pp.
1
11
. 10.1016/j.jsg.2017.03.009
20.
Maurer
,
W. C.
, and
Rinehart
,
J. S.
,
1960
, “
Impact Crater Formation in Rock
,”
J. Appl. Phys.
,
31
(
7
), pp.
1247
1252
. 10.1063/1.1735814
21.
Mardoukhi
,
A.
,
Hokka
,
M.
, and
Kuokkala
,
V.-T.
,
2018
, “
Experimental Study of the Dynamic Indentation Damage in Thermally Shocked Granite
,”
Rakenteiden Mekaniikka
,
51
(
1
), pp.
10
26
. 10.23998/rm.69036
22.
Chen
,
L. H.
, and
Labuz
,
J. F.
,
2006
, “
Indentation of Rock by Wedge-Shaped Tools
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
7
), pp.
1023
1033
. 10.1016/j.ijrmms.2006.03.005
23.
Sun
,
B.
,
Zhu
,
Z. D.
,
Shi
,
C.
, and
Luo
,
Z. H.
,
2017
, “
Dynamic Mechanical Behavior and Fatigue Damage Evolution of Sandstone Under Cyclic Loading
,”
Int. J. Rock Mech. Min. Sci.
,
94
, pp.
82
89
. 10.1016/j.ijrmms.2017.03.003
24.
Liu
,
H. Y.
,
Kou
,
S. Q.
,
Lindqvist
,
P. A.
, and
Tang
,
C. A.
,
2002
, “
Numerical Simulation of the Rock Fragmentation Process Induced by Indenters
,”
Int. J. Rock Mech. Min. Sci.
,
39
(
4
), pp.
491
505
. 10.1016/S1365-1609(02)00043-6
25.
Cheng
,
Z.
,
Sheng
,
M.
,
Li
,
G. S.
,
Huang
,
Z. W.
,
Wu
,
X. G.
,
Zhu
,
Z. P.
, and
Yang
,
J. W.
,
2018
, “
Imaging the Formation Process of Cuttings: Characteristics of Cuttings and Mechanical Specific Energy in Single PDC Cutter Tests
,”
J. Pet. Sci. Eng.
,
171
, pp.
854
862
. 10.1016/j.petrol.2018.07.083
26.
Kuang
,
Y. C.
,
Zhang
,
M. M.
,
Feng
,
M.
,
Zhang
,
Y.
,
Han
,
Y. W.
, and
Peng
,
Y. Z.
,
2016
, “
Simulation and Experimental Research of PDC Bit Cutting Rock
,”
J. Fail. Anal. Prev.
,
16
(
6
), pp.
1101
1107
. 10.1007/s11668-016-0188-9
27.
Huang
,
K. L.
,
Ai
,
Z. J.
,
Yang
,
Y. X.
, and
Xie
,
Z. L.
,
2019
, “
The Improved Rock Breaking Efficiency of an Annular-Groove PDC bit
,”
J. Pet. Sci. Eng.
,
172
, pp.
425
435
. 10.1016/j.petrol.2018.09.079
28.
Hareland
,
G.
,
Yan
,
W.
,
Nygaard
,
R.
, and
Wise
,
J. L.
,
2009
, “
Cutting Efficiency of a Single PDC Cutter on Hard Rock
,”
J. Can. Pet. Technol.
,
48
(
6
), pp.
60
65
. 10.2118/09-06-60
29.
Dai
,
X.
,
Huang
,
Z.
,
Xiong
,
C.
,
Shi
,
H.
,
Wu
,
X.
,
Zou
,
W.
, and
Cheng
,
Z.
,
2020
, “
Experimental Investigation of the PDC Cutter Penetration Process
,”
54th US Rock Mechanics/Geomechanics Symposium
,
American Rock Mechanics Association
.
30.
Li
,
X.-B.
,
Summers
,
D. A.
,
Rupert
,
G.
,
Santi
,
P. J. T.
, and
Technology
,
U. S.
,
2001
, “
Experimental Investigation on the Breakage of Hard Rock by the PDC Cutters With Combined Action Modes
,”
Tunnelling Underground Space Technol.
,
16
(
2
), pp.
107
114
. 10.1016/S0886-7798(01)00036-0
31.
Akbari
,
B.
, and
Miska
,
S. Z.
,
2017
, “
Relative Significance of Multiple Parameters on the Mechanical Specific Energy and Frictional Responses of Polycrystalline Diamond Compact Cutters
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022904
. 10.1115/1.4034291
32.
Jing
,
L.
, and
Hudson
,
J.
,
2002
, “
Numerical Methods in Rock Mechanics
,”
Int. J. Rock Mech. Min. Sci.
,
39
(
4
), pp.
409
427
. 10.1016/S1365-1609(02)00065-5
33.
Starfield
,
A. M.
, and
Cundall
,
P.
,
1988
, “Towards a Methodology for Rock Mechanics Modelling,”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
,
Elsevier
,
New York
, pp.
99
106
.
34.
Oreskes
,
N.
,
Shrader-Frechette
,
K.
, and
Belitz
,
K. J. S.
,
1994
, “
Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences
,”
Sciences
263
(
5147
), pp.
641
646
. 10.1126/science.263.5147.641
You do not currently have access to this content.