Abstract

Horizontal wellbore fracturing technology is an effective method to stimulate reservoirs and increase energy production, such as gas, oil, and geothermy. The perforation layout parameters are the key parameters affecting the fracturing effect. To analyze the influence of perforation layout parameters on hydraulic fracture propagation and optimization of the perforation layout parameters, the stress surrounding the perforation is derived, key oriented points and effective oriented angles are defined, and effective oriented criteria are proposed. The principal stress direction angle can be divided into three stages as the distance from the fracturing hole increases: decreasing stage (tends to the connection direction of perforations), stable stage, and increasing stage (tends to the maximum horizontal ground stress direction). A common relationship between the perforation length, the initial angle, the ground stress difference, and the suitable oriented angle is obtained. The results will guide the field application of the above fracturing technologies.

References

1.
International Energy Agency
,
2019
, “
Global Energy & CO2 Status Report 2018: The Latest Trends in Energy and Emissions in 2018
,” https://webstore.iea.org/global-energy-co2-status-report-2018
2.
Sutherland
,
K.
,
2012
, “
Oil and Gas: Separation Processes in Oil and Gas Extraction
,”
Filtr. Separat.
,
49
(
1
), pp.
20
25
. 10.1016/S0015-1882(12)70054-X
3.
Vedachalam
,
N.
,
Srinivasalu
,
S.
,
Rajendran
,
G.
,
Ramadass
,
G. A.
, and
Atmanand
,
M. A.
,
2015
, “
Review of Unconventional Hydrocarbon Resources in Major Energy Consuming Countries and Efforts in Realizing Natural Gas Hydrates as a Future Source of Energy
,”
J. Nat. Gas. Sci. Eng.
,
26
(
6
), pp.
163
175
. 10.1016/j.jngse.2015.06.008
4.
Butt
,
N.
,
Beyer
,
H. L.
,
Bennett
,
J. R.
,
Biggs
,
D.
,
Maggini
,
R.
,
Mills
,
M.
,
Renwick
,
A. R.
,
Seabrook
,
L. M.
, and
Possingham
,
H. P.
,
2013
, “
Biodiversity Risks From Fossil Fuel Extraction
,”
Science
,
342
(
6157
), pp.
425
426
. 10.1126/science.1237261
5.
Almansour
,
A.
, and
Insley
,
M.
,
2016
, “
The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands
,”
Energ. J.
,
37
(
2
), pp.
61
88
. 10.5547/01956574.37.2.aalm
6.
Towler
,
B.
,
Firouzi
,
M.
,
Underschultz
,
J.
,
Rifkin
,
W.
,
Garnett
,
A.
,
Schultz
,
H.
,
Esterle
,
J.
,
Tyson
,
S.
, and
Witt
,
K.
,
2016
, “
An Overview of the Coal Seam Gas Developments in Queensland
,”
J. Nat. Gas. Sci. Eng.
,
31
(
2
), pp.
249
271
. 10.1016/j.jngse.2016.02.040
7.
Karacan
,
C. O.
,
Ruiz
,
F. A.
,
Cote
,
M.
, and
Phipps
,
S.
,
2011
, “
Coal Mine Methane: A Review of Capture and Utilization Practices With Benefits to Mining Safety and to Greenhouse Gas Reduction
,”
Int. J. Coal. Geol.
,
86
(
2–3
), pp.
121
156
. 10.1016/j.coal.2011.02.009
8.
Zuo
,
S. J.
,
Ge
,
Z. L.
,
Deng
,
K.
,
Zheng
,
J. W.
, and
Wang
,
H. M.
,
2020
, “
Fracture Initiation Pressure and Failure Modes of Tree-Type Hydraulic Fracturing in Gas-Bearing Coal Seams
,”
J. Nat. Gas. Sci. Eng.
,
77
(
5
), pp.
260
270
. 10.1016/j.jngse.2020.103260
9.
Ritter
,
D.
,
Vinson
,
D.
,
Barnhart
,
E.
,
Akob
,
D. M.
,
Fields
,
M. W.
,
Cunningham
,
A.
,
Orem
,
W.
, and
McIntosh
,
J. C.
,
2015
, “
Enhanced Microbial Coalbed Methane Generation: A Review of Research, Commercial Activity, and Remaining Challenges
,”
Int. J. Coal. Geol.
,
146
(
4
), pp.
28
41
. 10.1016/j.coal.2015.04.013
10.
Ju
,
B. S.
,
Yang
,
Y.
,
Brantson
,
T.
, and
Chi
,
J.
,
2017
, “
A Numerical Simulator Developed for Modeling Permeability Control for Enhanced Oil Recovery
,”
J. Petrol. Sci. Eng.
,
159
(
8
), pp.
360
375
. 10.1016/j.petrol.2017.08.056
11.
Song
,
X. Z.
,
Pang
,
Z. Y.
,
Xu
,
Z. M.
,
Li
,
G. S.
,
Sun
,
B. J.
,
Zhu
,
Z. P.
,
Yang
,
R. Y.
, and
Lyu
,
Z. H.
,
2019
, “
Experimental Study on the Sliding Friction for Coiled Tubing and High-Pressure Hose in a Cuttings Bed During Microhole-Horizontal-Well Drilling
,”
Spe. Journal.
,
24
(
5
), pp.
2010
2019
. 10.2118/194192-PA
12.
Ibatullin
,
R. R.
,
2017
, “
Experience in North America Tight Oil Reserves Development. Horizontal Wells and Multistage Hydraulic Fracturing
,”
Georesursy
,
19
(
3
), pp.
176
181
. 10.18599/grs.19.3.4
13.
Lu
,
Y. Y.
,
Zuo
,
S. J.
,
Ge
,
Z. L.
,
Xiao
,
S. Q.
, and
Cheng
,
Y. G.
,
2016
, “
Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array
,”
Energies
,
9
(
7
), pp.
514
528
. 10.3390/en9070514
14.
Lei
,
X.
,
Zhang
,
S. C.
,
Xu
,
G. Q.
, and
Zou
,
Y. S.
,
2015
, “
Impact of Perforation on Hydraulic Fracture Initiation and Extension in Tight Natural Gas Reservoirs
,”
Energy Technol-Ger
,
3
(
6
), pp.
618
624
. 10.1002/ente.201402206
15.
Fallahzadeh
,
S. H.
, and
Shadizadeh
,
S. R.
,
2013
, “
A New Model for Analyzing Hydraulic Fracture Initiation in Perforation Tunnels
,”
Energ. Source. Part A
,
35
(
1
), pp.
9
21
. 10.1080/15567036.2010.501367
16.
Zhu
,
H. Y.
,
Deng
,
J. G.
,
Jin
,
X. C.
,
Hu
,
L. B.
, and
Luo
,
B.
,
2015
, “
Hydraulic Fracture Initiation and Propagation From Wellbore With Oriented Perforation
,”
Rock Mech. Rock Eng.
,
48
(
2
), pp.
585
601
. 10.1007/s00603-014-0608-7
17.
Zhu
,
H. Y.
,
Deng
,
J. G.
,
Chen
,
Z. J.
,
An
,
F. C.
,
Liu
,
S. J.
,
Peng
,
C. Y.
,
Wen
,
M.
, and
Dong
,
G.
,
2013
, “
Perforation Optimization of Hydraulic Fracturing of Oil and Gas Well
,”
Geomech. Eng.
,
5
(
5
), pp.
463
483
. 10.12989/gae.2013.5.5.463
18.
Fallahzadeh
,
S. H.
,
Rasouli
,
V.
, and
Sarmadivaleh
,
M.
,
2015
, “
An Investigation of Hydraulic Fracturing Initiation and Near-Wellbore Propagation From Perforated Boreholes in Tight Formations
,”
Rock Mech. Rock Eng.
,
48
(
2
), pp.
573
584
. 10.1007/s00603-014-0595-8
19.
Haddad
,
M.
, and
Sepehrnoori
,
K.
,
2016
, “
XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations
,”
Rock Mech. Rock Eng.
,
49
(
12
), pp.
4731
4748
. 10.1007/s00603-016-1057-2
20.
Ding
,
Y.
,
Liu
,
X. J.
, and
Luo
,
P. Y.
,
2018
, “
The Analytical Model of Hydraulic Fracture Initiation for Perforated Borehole in Fractured Formation
,”
J. Petrol. Sci. Eng.
,
162
(
10
), pp.
502
512
. 10.1016/j.petrol.2017.10.008
21.
Guo
,
T. K.
,
Rui
,
Z. H.
,
Qu
,
Z. Q.
, and
Qi
,
N.
,
2018
, “
Experimental Study of Directional Propagation of Hydraulic Fracture Guided by Multi-Radial Slim Holes
,”
J. Petrol. Sci. Eng.
,
166
(
3
), pp.
592
601
. 10.1016/j.petrol.2018.03.102
22.
Dong
,
Z.
,
Tang
,
S. B.
,
Ranjith
,
P. G.
, and
Lang
,
Y. X.
,
2018
, “
A Theoretical Model for Hydraulic Fracturing Through a Single Radial Perforation Emanating From a Borehole
,”
Eng. Fract. Mech.
,
196
(
4
), pp.
28
42
. 10.1016/j.engfracmech.2018.04.029
23.
Zhao
,
X.
,
Ju
,
Y.
,
Yang
,
Y.
,
Su
,
S.
, and
Gong
,
W. B.
,
2016
, “
Impact of Hydraulic Perforation on Fracture Initiation and Propagation in Shale Rocks
,”
Sci. China Technol. Sci.
,
59
(
5
), pp.
756
762
. 10.1007/s11431-016-6038-x
24.
Sobhaniaragh
,
B.
,
Trevelyan
,
J.
,
Mansur
,
W. J.
, and
Peters
,
F. C.
,
2017
, “
Numerical Simulation of MZF Design With Non-Planar Hydraulic Fracturing From Multi-Lateral Horizontal Wells
,”
J. Nat. Gas. Sci. Eng.
,
46
(
7
), pp.
93
107
. 10.1016/j.jngse.2017.07.005
25.
Sobhaniaragh
,
B.
,
Nguyen
,
V. P.
,
Mansur
,
W. J.
, and
Peters
,
F. C.
,
2018
, “
Pore Pressure and Stress Coupling in Closely-Spaced Hydraulic Fracturing Designs on Adjacent Horizontal Wellbores
,”
Eur. J. Mech. A-Solid.
,
67
(
8
), pp.
18
33
. 10.1016/j.euromechsol.2017.08.010
26.
Xie
,
J. Y.
,
Cheng
,
W.
,
Wang
,
R. J.
,
Jiang
,
G. S.
,
Sun
,
D.
, and
Sun
,
J. Z.
,
2018
, “
Experiments and Analysis on the Influence of Perforation Mode on Hydraulic Fracture Geometry in Shale Formation
,”
J. Petrol. Sci. Eng.
,
168
(
5
), pp.
133
147
. 10.1016/j.petrol.2018.05.017
27.
Manriquez
,
A. L.
,
2018
, “
Stress Behavior in the Near Fracture Region Between Adjacent Horizontal Wells During Multistage Fracturing Using a Coupled Stress-Displacement to Hydraulic Diffusivity Model
,”
J. Petrol. Sci. Eng.
,
162
(
11
), pp.
822
834
. 10.1016/j.petrol.2017.11.009
28.
Lu
,
Y.
,
Li
,
H. T.
,
Lu
,
C.
,
Wu
,
K. L.
,
Chen
,
Z. X.
,
Wang
,
K.
,
Luo
,
H. W.
, and
Shan
,
J. C.
,
2019
, “
The Effect of Completion Strategy on Fracture Propagation From Multiple Cluster Perforations in Fossil Hydrogen Energy Development
,”
Int. J. Hydrogen Energ.
,
44
(
14
), pp.
7168
7180
. 10.1016/j.ijhydene.2019.01.121
29.
Razavi
,
O.
,
Vajargah
,
A. K.
,
van Oort
,
E.
, and
Aldin
,
M.
,
2017
, “
Comprehensive Analysis of Initiation and Propagation Pressures in Drilling Induced Fractures
,”
J. Petrol. Sci. Eng.
,
149
(
10
), pp.
228
243
. 10.1016/j.petrol.2016.10.039
30.
Zhao
,
J. Z.
,
Peng
,
Y.
,
Li
,
Y. M.
, and
Tian
,
Z. S.
,
2017
, “
Applicable Conditions and Analytical Corrections of Plane Strain Assumption in the Simulation of Hydraulic Fracturing
,”
Petrol. Explor. Dev.
,
44
(
3
), pp.
454
461
. 10.1016/S1876-3804(17)30052-6
31.
Li
,
Y.
,
Rui
,
Z.
,
Zhao
,
W.
,
Bo
,
Y.
,
Fu
,
C.
, and
Chen
,
G.
,
2018
, “
Study on the Mechanism of Rupture and Propagation of T-Type Fractures in Coal Fracturing
,”
J. Nat. Gas. Sci. Eng.
,
52
(
1
), pp.
379
389
. 10.1016/j.jngse.2018.01.010
32.
Su
,
X. B.
,
Wang
,
Q.
,
Lin
,
H. X.
,
Song
,
J. X.
, and
Guo
,
H. Y.
,
2018
, “
A Combined Stimulation Technology for Coalbed Methane Wells: Part 1. Theory and Technology
,”
Fuel
,
233
(
6
), pp.
592
603
. 10.1016/j.fuel.2018.06.087
33.
Xu
,
B. X.
,
Li
,
X. F.
,
Haghighi
,
M.
,
Ren
,
W. N.
,
Du
,
X. Y.
,
Chen
,
D.
, and
Zhai
,
Y. Y.
,
2013
, “
Optimization of Hydraulically Fractured Well Configuration in Anisotropic Coal-Bed Methane Reservoirs
,”
Fuel
,
107
(
1
), pp.
859
865
. 10.1016/j.fuel.2013.01.063
34.
Zhao
,
J. Z.
,
Yin
,
Q.
, and
Li
,
Y. M.
,
2015
, “
A Pseudo-Three-Dimensional Model for Thermoelastic Stress Field Around a Re-Fractured Gas Well
,”
Natural Gas Geosci.
,
26
(
11
), pp.
2131
2136
.
35.
Liu
,
H.
,
Lan
,
Z. X.
,
Wang
,
S. L.
,
Xu
,
J. G.
, and
Zhao
,
C. X.
,
2015
, “
Hydraulic Fracture Initiation Mechanism in the Definite Plane Perforating Technology of Horizontal Well
,”
Petrol. Explor. Dev.
,
42
(
6
), pp.
869
875
. 10.1016/S1876-3804(15)30084-7
36.
Liu
,
Q. S.
,
Sun
,
L.
,
Tang
,
X. H.
, and
Guo
,
B.
,
2019
, “
Modelling Hydraulic Fracturing With a Point-Based Approximation for the Maximum Principal Stress Criterion
,”
Rock Mech. Rock Eng.
,
52
(
6
), pp.
1781
1801
. 10.1007/s00603-018-1648-1
37.
da Silva
,
B. G.
, and
Einstein
,
H. H.
,
2014
, “
Finite Element Study of Fracture Initiation in Flaws Subject to Internal Fluid Pressure and Vertical Stress
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4122
4136
. 10.1016/j.ijsolstr.2014.08.006
38.
Hossain
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
2000
, “
Hydraulic Fracture Initiation and Propagation: Roles of Wellbore Trajectory, Perforation and Stress Regimes
,”
J. Petrol. Sci. Eng.
,
27
(
3–4
), pp.
129
149
. 10.1016/S0920-4105(00)00056-5
39.
Lu
,
Y. Y.
,
Zhou
,
Z.
,
Ge
,
Z. L.
,
Zhang
,
X. W.
, and
Li
,
Q.
,
2015
, “
Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines
,”
Energies
,
8
(
12
), pp.
14260
14271
. 10.3390/en81212426
You do not currently have access to this content.