Abstract

Hydrocarbons in oil shale are significant for the output of fossil fuels and petrochemical materials; thus, the oil yield characterization is of great significance for efficient utilization and commercial exploitation of these resources. In this paper, we propose an evaluating means combined with electrical testing and terahertz (THz) measurements, named as resistivity-THz analysis (RTA), to characterize the oil shale from different places in China. Electrical and THz measurements were performed together to characterize the oil yield-dependent resistivity and THz absorption. Owing to the divergence in structures and compositions, both the electrical conductivity and THz parameters varied non-monotonic with the oil yield. However, electrically tunable THz wave absorption of oil shale can be realized by the linear correlation between the resistivity and THz attenuation coefficient, with the tunability varies monotonously with the oil yield. The results demonstrate that the carbon structures in kerogens are not only the conductive medium in oil shale but also the main source of THz absorption. As a non-contacting means for organic content characterization in oil shale, RTA is helpful to optimize the comprehensive utilization of this unconventional resource.

References

1.
Jia
,
B.
,
Tsau
,
J. S.
, and
Barati
,
R.
,
2019
, “
A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs
,”
Fuel
,
236
, pp.
404
427
. 10.1016/j.fuel.2018.08.103
2.
Bake
,
K. D.
, and
Pomerantz
,
A. E.
,
2017
, “
Optical Analysis of Pyrolysis Products of Green River oil Shale
,”
Energ. Fuels
,
31
(
12
), pp.
13345
13352
. 10.1021/acs.energyfuels.7b01020
3.
Niu
,
M.
,
Wang
,
S.
,
Han
,
X.
, and
Jiang
,
X.
,
2013
, “
Yield and Characteristics of Shale Oil From the Retorting of oil Shale and Fine Oil-Shale Ash Mixtures
,”
Appl. Energ.
,
111
, pp.
234
239
. 10.1016/j.apenergy.2013.04.089
4.
Pawar
,
G.
,
Meakin
,
P.
, and
Hai
,
H.
,
2017
, “
Reactive Molecular Dynamics Simulation of Kerogen Thermal Maturation and Crosslinking Pathways
,”
Energ. Fuels
,
31
(
11
), pp.
11601
11614
. 10.1021/acs.energyfuels.7b01555
5.
Hu
,
T.
,
Pang
,
X.
,
Jiang
,
S.
,
Wang
,
Q.
,
Zheng
,
X.
,
Ding
,
X.
,
Zhao
,
Y.
,
Zhu
,
C.
, and
Li
,
H.
,
2018
, “
Oil Content Evaluation of Lacustrine Organic-Rich Shale With Strong Heterogeneity: A Case Study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China
,”
Fuel
,
221
, pp.
196
205
. 10.1016/j.fuel.2018.02.082
6.
Jin
,
L.
,
Hawthorne
,
S.
,
Sorensen
,
J.
,
Pekot
,
L.
,
Kurz
,
B.
,
Smith
,
S.
,
Heebink
,
L.
,
Herdegen
,
V.
,
Bosshart
,
N.
,
Torres
,
J.
,
Dalkhaa
,
C.
,
Peterson
,
K.
,
Gorecki
,
C.
,
Steadman
,
E.
, and
Harju
,
J.
,
2017
, “
Advancing CO2 Enhanced Oil Recovery and Storage in Unconventional Oil Play-Experimental Studies on Bakken Shales
,”
Appl. Energ.
,
208
, pp.
171
183
. 10.1016/j.apenergy.2017.10.054
7.
Bai
,
F. T.
,
Wei
,
G.
,
,
X. S.
,
Liu
,
Y. M.
,
Guo
,
M. Y.
,
Qiang
,
L.
, and
Sun
,
Y. H.
,
2015
, “
Kinetic Study on the Pyrolysis Behavior of Huadian Oil Shale via Non-Isothermal Thermogravimetric Data
,”
Fuel
,
146
, pp.
111
118
. 10.1016/j.fuel.2014.12.073
8.
Kumar
,
R.
,
Bansal
,
V.
,
Badhe
,
R. M.
,
Madhira
,
I. S. S.
,
Sugumaran
,
V.
,
Ahmed
,
S.
,
Christopher
,
J.
,
Patel
,
M. B.
, and
Basu
,
B.
,
2013
, “
Characterization of Indian Origin Oil Shale Using Advanced Analytical Techniques
,”
Fuel
,
113
, pp.
610
616
. 10.1016/j.fuel.2013.05.055
9.
Mehmani
,
Y.
,
Burnham
,
A. K.
, and
Tchelepi
,
H. A.
,
2016
, “
From Optics to Upscaled Thermal Conductivity: Green River Oil Shale
,”
Fuel
,
183
, pp.
489
500
. 10.1016/j.fuel.2016.06.101
10.
Goth
,
K.
,
de Leeuw
,
J. W.
,
Püttmann
,
W.
, and
Tegelaar
,
E. W.
, “
Origin of Messel Oil Shale Kerogen
,”
Nature
,
336
(
6201
), pp.
759
761
. 10.1038/336759a0
11.
Saif
,
T.
,
Lin
,
Q.
,
Butcher
,
A. R.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2017
, “
Multi-Scale Multi-Dimensional Microstructure Imaging of Oil Shale Pyrolysis Using X-ray Micro-Tomography, Automated Ultra-High Resolution SEM, MAPS Mineralogy and FIB-SEM
,”
Appl. Energ.
,
202
, pp.
628
647
. 10.1016/j.apenergy.2017.05.039
12.
Chen
,
C.
,
Gao
,
S.
,
Sun
,
Y. H.
,
Guo
,
W.
, and
Li
,
Q.
,
2017
, “
Research on Underground Dynamic Fluid Pressure Balance in the Process of Oil Shale In-Situ Fracturing-Nitrogen Injection Exploitation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032908
. 10.1115/1.4035748
13.
Allan
,
A. M.
,
Kanitpanyacharoen
,
W.
, and
Vanorio
,
T. A.
,
2015
, “
A Multiscale Methodology for the Analysis of Velocity Anisotropy in Organic-Rich Shale
,”
Geophysics
,
80
(
4
), pp.
C73
C88
. 10.1190/geo2014-0192.1
14.
Passey
,
Q. R.
,
Creaney
,
S.
,
Kulla
,
J. B.
,
Moretti
,
F. J.
, and
Stroud
,
J. D.
,
1990
, “
Practical Model for Organic Richness From Porosity and Resistivity Logs
,”
AAPG Bull.
,
74
(
12
), pp.
1777
1794
. 10.1016/0148-9062(91)90313-B
15.
Miao
,
X.
,
Zhan
,
H.
, and
Zhao
,
K.
,
2017
, “
Application of THz Technology in Oil and Gas Optics
,”
Sci. China Phys. Mech. Astron.
,
60
(
2
), p.
024231
. 10.1007/s11433-016-0452-9
16.
Feng
,
X.
,
Wu
,
S. X.
,
Zhao
,
K.
,
Wang
,
W.
,
Zhan
,
H. L.
,
Jiang
,
C.
,
Xiao
,
L. Z.
, and
Chen
,
S. H.
,
2015
, “
Pattern Transitions of Oil-Water Two-Phase Flow With Low Water Content in Rectangular Horizontal Pipes Probed by Terahertz Spectrum
,”
Opt. Express
,
23
(
24
), pp.
A1693
A1699
. 10.1364/OE.23.0A1693
17.
Miao
,
X. Y.
,
Zhan
,
H. L.
,
Zhao
,
K.
,
Zhang
,
Z. W.
,
Xu
,
L.
,
Zhang
,
C. L.
, and
Xiao
,
L. Z.
,
2018
, “
Terahertz-Dependent PM2.5 Monitoring and Grading in the Atmosphere
,”
Sci. China Phys. Mech. Astron.
,
61
(
10
), p.
104211
. 10.1007/s11433-018-9237-1
18.
Miao
,
X.
,
Zhu
,
J.
,
Zhao
,
K.
,
Zhan
,
H.
, and
Yue
,
W.
,
2018
, “
Determining the Humidity Dependent Ortho-to-Para Ratio of Water Vapor at Room Temperature by Terahertz Spectroscopy
,”
Appl. Spectros.
,
72
(
7
), pp.
1040
1046
. 10.1177/0003702818772853
19.
Bao
,
R. M.
,
Li
,
Y. Z.
,
Zhan
,
H. L.
,
Zhao
,
K.
,
Wang
,
W.
,
Ma
,
Y.
,
Wu
,
J. X.
,
Liu
,
S. H.
,
Li
,
S. Y.
, and
Xiao
,
L. Z.
,
2015
, “
Probing the Oil Content in Oil Shale With Terahertz Spectroscopy
,”
Sci. China Phys. Mech. Astron.
,
58
(
11
), p.
114211
. 10.1007/s11433-015-5731-2
20.
Li
,
Y. Z.
,
Wu
,
S. X.
,
Yu
,
X. L.
,
Bao
,
R. M.
,
Wu
,
Z. K.
,
Wang
,
W.
,
Zhan
,
H. L.
,
Zhao
,
K.
,
Ma
,
Y.
,
Wu
,
J. X.
,
Liu
,
S. H.
, and
Li
,
S. Y.
,
2017
, “
Optimization of Pyrolysis Efficiency Based on Optical Property of Semicoke in Terahertz Region
,”
Energy
,
126
, pp.
202
207
. 10.1016/j.energy.2017.03.020
21.
Li
,
Y.
,
Miao
,
X.
,
Zhan
,
H.
,
Wang
,
W.
,
Bao
,
R.
,
Leng
,
W.
, and
Zhao
,
K.
,
2018
, “
Evaluating oil Potential in Shale Formations Using Terahertz Time-Domain Spectroscopy
,”
ASME J Energ. Resour. Technol.
,
140
(
3
), p.
034501
. 10.1115/1.4038664
22.
Miao
,
X. Y.
,
Chen
,
M. X.
,
Li
,
Y. Z.
,
Zhan
,
H. L.
,
Zhao
,
K.
, and
Yue
,
W. Z.
,
2020
, “
Simultaneous Determination of Organic Distribution and Content in oil Shale by Terahertz Imaging
,”
Energ. Fuels
,
34
(
2
), pp.
1664
1668
. 10.1021/acs.energyfuels.9b04038
23.
Miao
,
X. Y.
,
Zhan
,
H. L.
, and
Zhao
,
K.
,
2016
, “
Oil Yield Characterization by Anisotropy in Optical Parameters of the Oil Shale
,”
Energ. Fuels
,
30
(
12
), pp.
10365
10370
. 10.1021/acs.energyfuels.6b02443
24.
Khatibi
,
S.
,
Ostadhassan
,
M.
,
Tuschel
,
D.
,
Gentzis
,
T.
, and
Carvajal-Ortiz
,
H.
,
2018
, “
Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation With Optical Microscopy and Rock-Eval Pyrolysis
,”
Energies
,
11
(
6
), p.
1406
. 10.3390/en11061406
25.
Jiang
,
C.
,
Zhao
,
K.
,
Zhao
,
L. J.
,
Jin
,
W. J.
,
Yang
,
Y. P.
, and
Chen
,
S. H.
,
2014
, “
Probing Disaggregation of Crude Oil in a Magnetic Field With Terahertz Time-Domain Spectroscopy
,”
Energ. Fuels
,
28
(
1
), pp.
483
487
. 10.1021/ef401984u
26.
Zhan
,
H. L.
,
Wu
,
S. X.
,
Bao
,
R. M.
,
Ge
,
L. N.
, and
Zhao
,
K.
,
2015
, “
Qualitative Identification of Crude Oils From Different Oil Fields Using Terahertz Time-Domain Spectroscopy
,”
Fuel
,
43
, pp.
189
193
. 10.1016/j.fuel.2014.11.047
27.
Scales
,
J. A.
, and
Batzle
,
M.
,
2006
, “
Millimeter Wave Analysis of the Dielectric Properties of Oil Shales
,”
Appl. Phys. Lett.
,
89
(
2
), p.
024102
. 10.1063/1.2219720
28.
Zhan
,
H.
,
Wu
,
S.
,
Zhao
,
K.
,
Bao
,
R.
, and
Xiao
,
L.
,
2016
, “
CaCO3, its Reaction and Carbonate Rocks: Terahertz Spectroscopy Investigation
,”
J. Geophys. and Engin.
,
13
(
5
), pp.
768
774
. 10.1088/1742-2132/13/5/768
29.
Zhu
,
J.
,
Zhan
,
H. L.
,
Miao
,
X. Y.
,
Song
,
Y.
, and
Zhao
,
K.
,
2016
, “
Adsorption Dynamics and Rate Assessment of Volatile Organic Compounds in Active Carbon
,”
Phys. Chem. Chem. Phys.
,
18
(
39
), p.
27175
. 10.1039/c6cp05593a
30.
Zhan
,
H.
,
Chen
,
R.
,
Miao
,
X.
,
Li
,
Y.
,
Zhao
,
K.
,
Hao
,
S.
, and
Chen
,
X.
,
2018
, “
Size Effect on Microparticle Detection
,”
IEEE Tran. THz Sci. Tech.
,
8
(
5
), pp.
477
481
. 10.1109/TTHZ.2018.2845115
31.
Zhan
,
H. L.
,
Chen
,
M.
,
Zhao
,
K.
,
Li
,
Y.
,
Miao
,
X.
,
Ye
,
H.
,
Ma
,
Y.
,
Hao
,
S.
,
Li
,
H.
, and
Yue
,
W.
,
2018
, “
The Mechanism of the Terahertz Spectroscopy for Oil Shale Detection
,”
Energy
,
161
, pp.
46
51
. 10.1016/j.energy.2018.07.112
32.
Jia
,
B.
,
Tsau
,
J. S.
, and
Barati
,
R.
,
2018
, “
Different Flow Behaviors of Low-Pressure and High-Pressure Carbon Dioxide in Shales
,”
SPE J.
,
23
(
4
), pp.
1452
1468
. 10.2118/191121-PA
33.
Vij
,
J. K.
,
Simpson
,
D. R. J.
, and
Panarina
,
O. E.
,
2004
, “
Far Infrared Spectroscopy of Water at Different Temperatures: GHz to THz Dielectric Spectroscopy of Water
,”
J. Mol. Liq.
,
112
(
3
), pp.
125
135
. 10.1016/j.molliq.2003.12.014
34.
Ronne
,
C.
,
Thranea
,
L.
,
Astrand
,
P. O.
,
Wallqvist
,
A.
,
Mikkelsen
,
K. V.
, and
Keiding
,
S. R.
,
1997
, “
Investigation of the Temperature Dependence of Dielectric Relaxation in Liquid Water by THz Reflection Spectroscopy and Molecular Dynamics Simulation
,”
J. Chem. Phys.
,
107
(
14
), pp.
5319
5331
. 10.1063/1.474242
35.
Al-Ayed
,
O. S.
, and
Matouq
,
M.
,
2009
, “
Factors Affecting Sulfur Reactions in High Sulfur Oil Shale Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012501
. 10.1115/1.3068338
36.
Nelfa
,
D.
,
Takuya
,
N.
,
Kimihito
,
N.
,
Akira
,
I.
,
Kuniyuki
,
K.
, and
Ashwani
,
K. G.
,
2013
, “
Spectroscopic Observation of Chemical Species From High-Temperature Air Pulverized Coal Combustion
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034503
. 10.1115/1.4024120
37.
Hirotoshi
,
T.
,
Hiroshi
,
A.
,
Kuniyuki
,
K.
,
Hiroyuki
,
O.
, and
Ashwani
,
K. G.
,
2015
, “
Laser-Induced Plasma Spectrometry With Chemical Seeding and Application to Flow Mixing Analysis in Methane–Air Flames
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012202
. 10.1115/1.4027980
38.
Miao
,
X.
,
Zhu
,
J.
,
Li
,
Y.
,
Zhao
,
K.
,
Zhan
,
H.
, and
Yue
,
W.
,
2018
, “
Ultraviolet Laser-Induced Voltage in Anisotropic Shale
,”
J. Phys. D Appl. Phys.
,
51
(
4
), p.
045503
. 10.1088/1361-6463/aaa17d
39.
Lu
,
Z. Q.
,
Sun
,
Q.
,
Zhao
,
K.
,
Liu
,
H.
,
Feng
,
X.
,
Wang
,
J.
, and
Xiao
,
L. Z.
,
2015
, “
Laser-Induced Voltage of Oil Shale for Characterizing the Oil Yield
,”
Energ. Fuels
,
29
(
8
), pp.
4936
4940
. 10.1021/acs.energyfuels.5b01233
40.
Hiroyuki
,
O.
,
Joe
,
K.
,
Shigeo
,
Y.
,
Kuniyuki
,
K.
, and
Ashwani
,
K. G.
,
2013
, “
Time-Resolved Two-Dimensional Temperature Measurement From Acetylene-Oxygen Flame Using Chemical Seeding Spectrocamera
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011101
. 10.1115/1.4024916
41.
Zhan
,
H. L.
,
Ren
,
Z. W.
,
Chen
,
R.
,
Zhao
,
K.
,
Han
,
G. H.
,
Miao
,
X. Y.
, and
Yue
,
W. Z.
,
2020
, “
A new Approach for Desert Reservoir Exploration: Terahertz Prospecting
,”
IEEE Tran. THz Sci. Tech.
,
10
(
1
), pp.
68
73
. 10.1109/TTHZ.2019.2946454
You do not currently have access to this content.