Abstract

This study presents an analytical method that can be used to enhance the power production rate and the energy-saving at wastewater treatment plants. The digester used at wastewater treatment plants produces digester gas by anaerobic digestion, with which biofuel production can be achieved. Biofuels can be used to meet some of the energy requirements of the wastewater treatment facility through combined heat and power (CHP) gas engines (cogeneration). Using micro gas turbine (MGT), a CHP technology can be introduced in wastewater treatment plants (WWTPs). The combination of MGTs and absorption chillers is a promising technology as it produces electricity, heating, and cooling simultaneously. The study demonstrated how the waste heat of MGTs could be used to drive absorption chillers. In this analytical study, a detailed technical and economic analysis is provided on the trigeneration system, i.e., the integration of MGTs and absorption chillers driven by waste digester gas of the wastewater treatment plants. It can meet the heating and cooling demands of the plants, which promote the reduction of utility costs. The technology presented is also useful for other thermal energy users.

References

References
1.
Renewable Energy
,’
2019
Wisconsin Academy of Sciences, Arts and Letters
, https://www.wisconsinacademy.org/content/renewable-energy, Accessed January 8, 2020.
2.
U.S. MICROTURBINE CHP MARKET SHARE GROWS TO A RECORD 25%
’,
Capstone Turbine Corporation, August 29, 2018
, https://www.capstoneturbine.com/news/press-releases/detail/3625/, Accessed January 8, 2020.
3.
Cardona
,
E.
, and
Piacentino
,
A.
,
2004
, “
A Validation Methodology for a Combined Heating Cooling and Power (CHCP) Pilot Plant
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
285
292
. 10.1115/1.1803849
4.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery-Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
. 10.1115/1.3120381
5.
Vasquez Padilla
,
R.
,
Ramos Archibold
,
A.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Yogi Goswami
,
D.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
. 10.1115/1.4006434
6.
Liu
,
P.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Zhang
,
D.
,
2019
, “
Rheological Properties and Stability Characteristics of Biochar-Algae-Water Slurry Fuels Prepared by Wet Milling
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070709
. 10.1115/1.4043551
7.
Amano
,
R. S.
,
Abbas
,
A. I.
,
Al-Haddad
,
M.
, and
Qandil
,
M. D.
,
2019
, “
Energy Consumption, Energy-Saving and Emissions Reduction of Wastewater Treatment Plants (WWTPs) in Wisconsin
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, p.
4239
.
8.
Tourlidakis
,
A.
,
Malkogianni
,
A.
, and
Karlopoulos
,
E.
,
2013, June
, “
Combined Heat and Power Generation for a Small Municipality for District Heating Purposes, Using Different Fuels
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, p.
V05AT20A008
.
9.
Sdringola
,
P.
,
Proietti
,
S.
,
Astolfi
,
D.
, and
Castellani
,
F.
,
2018
, “
Combined Heat and Power Plant and District Heating and Cooling Network: A Test-Case in Italy With Integration of Renewable Energy
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
054502
. 10.1115/1.4040196
10.
Saidi
,
K.
,
Orth
,
U.
,
Boje
,
S.
, and
Frekers
,
C.
,
2014, June
, “
A Comparative Study of Combined Heat and Power Systems for a Typical Food Industry Application
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany
,
June 16–20
, Vol.
45653
, p.
V03AT21A010
.
11.
Cho
,
H.
,
Luck
,
R.
, and
Chamra
,
L. M.
,
2010
, “
Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
012401
. 10.1115/1.4000920
12.
Ippolito
,
F.
, and
Venturini
,
M.
,
2019
, “
Micro Combined Heat and Power System Transient Operation in a Residential User Microgrid
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042006
. 10.1115/1.4042231
13.
Hwang
,
Y.
,
2004
, “
Potential Energy Benefits of Integrated Refrigeration System With Microturbine and Absorption Chiller
,”
Int. J. Refrig.
,
27
(
8
), pp.
816
829
. 10.1016/j.ijrefrig.2004.01.007
14.
Abbas
,
A.
,
Saravani
,
M. S.
,
Al-Haddad
,
M.
, and
Amano
,
R. S.
,
2018
, “
Net-Zero-Energy (NZE) Wastewater Treatment Plants (WWTPs)
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, p.
1712
.
15.
MosayebNezhad
,
M.
,
Mehr
,
A. S.
,
Lanzini
,
A.
,
Misul
,
D.
, and
Santarelli
,
M.
,
2019
, “
Technology Review and Thermodynamic Performance Study of a Biogas-Fed Micro Humid Air Turbine
,”
Renewable Energy
,
140
, pp.
407
418
. 10.1016/j.renene.2019.03.064
16.
Understanding CHP
,’
Energy Solutions Center
, https://understandingchp.com/overview-2/system-schematics/, Accessed January 8, 2020.
17.
USDA, USEPA
,
2014
,
USDOE. Biogas Opportunities Roadmap: Voluntary Actions to Reduce Methane Emissions and Increase Energy Independence
.
Washington, DC
. https://bit.ly/2xEW9TV, Accessed on April 18, 2020.
18.
Characterization of CHP Opportunities at U.S. Wastewater Treatment Plants
,’
2019
,
U.S. Department of Energy
, https://bit.ly/2ze8uPs, Accessed on April 19, 2020.
19.
Szega
,
M.
, and
Żymełka
,
P.
,
2018
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
. 10.1115/1.4037369
20.
Ghaebi
,
H.
,
Karimkashi
,
S.
, and
Saidi
,
M. H.
,
2012
, “
Integration of an Absorption Chiller in a Total CHP Site for Utilizing Its Cooling Production Potential Based on the R-Curve Concept
,”
Int. J. Refrig.
,
35
(
5
), pp.
1384
1392
. 10.1016/j.ijrefrig.2012.03.021
21.
Zhang
,
C.
,
Yang
,
M.
,
Lu
,
M.
,
Zhu
,
J.
, and
Xu
,
W.
,
2012
, “
2012 International Conference on Medical Physics and Biomedical Engineering Thermal Economic Analysis on LiBr Refrigeration-Heat Pump System Applied in CCHP System
,”
Phys. Proc.
,
33
, pp.
672
677
. 10.1016/j.phpro.2012.05.119
22.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011301
. 10.1115/1.4005082
23.
Bruno
,
J. C.
,
Ortega-López
,
V.
, and
Coronas
,
A.
,
2009
, “
Integration of Absorption Cooling Systems Into Micro Gas Turbine Trigeneration Systems Using Biogas: A Case Study of a Sewage Treatment Plant
,”
Appl. Energy
,
86
(
6
), pp.
837
847
. 10.1016/j.apenergy.2008.08.007
24.
Fragiacomo
,
P.
,
De Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
. 10.1115/1.4039872
25.
Hasan
,
A.
, and
Dincer
,
I.
,
2020
, “
A New Integrated Ocean Thermal Energy Conversion-Based Trigeneration System for Sustainable Communities
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061301
. 10.1115/1.4045469
26.
American Society of Heating and Air-Conditioning Engineers
,
2015
,
Combined Heat and Power Design Guide
,
ASHRAE
.
27.
Picardo
,
A.
,
Soltero
,
V. M.
,
Peralta
,
M. E.
, and
Chacartegui
,
R.
,
2019
, “
District Heating Based on Biogas From Wastewater Treatment Plant
,”
Energy
,
180
, pp.
649
664
. 10.1016/j.energy.2019.05.123
28.
Nakatsuka
,
N.
,
Kishita
,
Y.
,
Kurafuchi
,
T.
, and
Akamatsu
,
F.
,
2020
, “
Integrating Wastewater Treatment and Incineration Plants for Energy-Efficient Urban Biomass Utilization: A Life Cycle Analysis
,”
J. Cleaner Prod.
,
243
, pp.
118
448
. 10.1016/j.jclepro.2019.118448
29.
Zuza
,
A.
,
Agachi
,
P. S.
,
Cristea
,
V. M.
,
Nair
,
A.
,
Tue
,
N. N.
, and
Horju-Deac
,
C.
,
2015
, “
Case Study on Energy Efficiency of Biogas Production in Industrial Anaerobic Digesters at Municipal Wastewater Treatment Plants
,”
Environ. Eng. Manage. J.
,
14
(
2
), pp.
357
360
. 10.30638/eemj.2015.036
30.
Trendewicz
,
A. A.
, and
Braun
,
R. J.
,
2012, July
, “
Modeling and Performance Evaluation of a Large-Scale Sofc-Based Combined Heat and Power System for Biogas Utilization at a Wastewater Treatment Facility
,”
ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability
,
San Diego, CA
,
July 23–26
, pp.
541
552
.
31.
Basrawi
,
M. F. B.
,
Yamada
,
T.
, and
Nakanishi
,
K.
,
2011, January
, “
Optimization of a Biogas-Fuelled Cogeneration System in a Sewage Treatment Plant
,”
ASME 2011 Power Conference Collocated With JSME ICOPE
,
Denver, CO
,
July 12–14
, pp.
393
402
.
32.
MosayebNezhad
,
M.
,
Mehr
,
A. S.
,
Gandiglio
,
M.
,
Lanzini
,
A.
, and
Santarelli
,
M.
,
2018
, “
Techno-economic Assessment of Biogas-Fed CHP Hybrid Systems in a Real Wastewater Treatment Plant
,”
Appl. Therm. Eng.
,
129
, pp.
1263
1280
. 10.1016/j.applthermaleng.2017.10.115
33.
Basrawi
,
F.
,
Ibrahim
,
T. K.
,
Habib
,
K.
,
Yamada
,
T.
, and
Idris
,
D. M. N. D.
,
2017
, “
Techno-economic Performance of Biogas-Fueled Micro Gas Turbine Cogeneration Systems in Sewage Treatment Plants: Effect of Prime Mover Generation Capacity
,”
Energy
,
124
, pp.
238
248
. 10.1016/j.energy.2017.02.066
34.
Somehsaraei
,
H. N.
,
Majoumerd
,
M. M.
,
Breuhaus
,
P.
, and
Assadi
,
M.
,
2014
, “
Performance Analysis of a Biogas-Fueled Micro Gas Turbine Using a Validated Thermodynamic Model
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
181
190
. 10.1016/j.applthermaleng.2014.02.010
35.
Ge
,
Y. T.
,
Tassou
,
S. A.
,
Chaer
,
I.
, and
Suguartha
,
N.
,
2009
, “
Performance Evaluation of a Tri-generation System With Simulation and Experiment
,”
Appl. Energy
,
86
(
11
), pp.
2317
2326
. 10.1016/j.apenergy.2009.03.018
36.
Chen
,
Y.
,
Zhang
,
T.
,
Yang
,
H.
, and
Peng
,
J.
,
2016
, “
Study on Energy and Economic Benefits of Converting a Combined Heating and Power System to a Tri-generation System for Sewage Treatment Plants in Subtropical Area
,”
Appl. Therm. Eng.
,
94
, pp.
24
39
. 10.1016/j.applthermaleng.2015.10.078
37.
Tchobanoglous
,
G.
,
Burton
,
F. L.
, and
Stensel
,
H. D.
,
2003
,
Metcalf & Eddy Wastewater Engineering: Treatment and Reuse
,
McGraw-Hill
,
New York
,
4
, pp.
361
411
.
38.
Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field
’,
U.S. Environmental Protection Agency Combined Heat and Power Partnership
,
2011
, https://bit.ly/2NrsHFv, Accessed on January 14, 2020.
39.
HOMER (Hybrid Optimization Model for Multiple Energy Resources) Pro Software, https://www.homerenergy.com/
40.
How Much Carbon Dioxide is Produced Per Kilowatt-Hour of U.S. Electricity Generation?
”,
US Energy Information Administration
,
2020
, https://www.eia.gov/tools/faqs/faq.php?id=74&t=11, Accessed March 19, 2020.
41.
Kaarsberg
,
T. M.
,
Elliott
,
R. N.
, and
Spurr
,
M.
,
1999
, “
An Integrated Assessment of the Energy Savings and Emissions-Reduction Potential of Combined Heat and Power
,”
Industry and Innovation in the 21st Century, Proceedings
,
USA
.
You do not currently have access to this content.