Abstract

Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.

References

References
1.
Schroder
,
A. U.
,
2011
, “
Experimental and Numerical Study of Impingement Jet Heat Transfer
,” Master thesis,
University of Cincinnati
.
2.
Galeana
,
D.
, and
Beyene
,
A.
,
2020
, “
A Swirl Cooling Flow Experimental Investigation on a Circular Chamber Using Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042002
. 10.1115/1.4044575
3.
Xie
,
G.
,
Li
,
S.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2013
, “
Computational Fluid Dynamics Modeling Flow Field and Side-Wall Heat Transfer in Rectangular Rib-Roughened Passages
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042001
. 10.1115/1.4023332
4.
Masci
,
R.
, and
Sciubba
,
E.
,
2018
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
. 10.1115/1.4038462
5.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blades With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042004
. 10.1115/1.4035829
6.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
. 10.1115/1.4042824
7.
Hu
,
S.
,
2009
, “
Heat Transfer Enhancement in Thermoelectric Power Generation
,”
Graduate Thesis, and Dissertations. Paper 12196
,
Iowa State University
.
8.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Won
,
S. Y.
,
1999
, “
The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
42
(
13
), pp.
2489
2497
. 10.1016/S0017-9310(98)00318-4
9.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2015
, “
Cross-flows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
. 10.1016/j.ijthermalsci.2014.09.003
10.
Xie
,
G.
,
Liu
,
C.
,
Ye
,
L.
,
Wang
,
R.
,
Niu
,
J.
, and
Zhai
,
Y.
,
2020
, “
Effects of Impingement Gap and Hole Arrangement on Overall Cooling Effectiveness for Impingement/Effusion Cooling
,”
Int. J. Heat Mass Transfer
,
152
, pp.
1
16
. 10.1016/j.ijheatmasstransfer.2020.119449
11.
Keenan
,
M.
,
Amano
,
R. S.
, and
Ou
,
S.
,
2013
, “
Study of an Impingement Cooling Jet Array for Turbine Blade Cooling With Single and Double Exit Cases
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, American Society of Mechanical Engineers Digital Collection.
12.
Amano
,
R. S.
, and
Sundén
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
, Vol.
25
,
WIT Press
,
USA
.
13.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Cross-Flow
,”
ASME 1981 International Gas Turbine Conference and Products Show
,
Houston, TX
,
Mar. 9–12
, p. V003T09A005.
14.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for In-Line and Staggered Arrays of Circular Jets With Cross-Flow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
. 10.1115/1.3451022
15.
Wang
,
X.
,
Liu
,
R.
, and
Bai
,
X.
,
2011
, “
Numerical Study on Flow and Heat Transfer Characteristics of Jet Impingement
,”
ASME Turbo Expo, GT2011-45287
,
Vancouver, British Columbia, Canada
,
June 6–10
.
16.
Behbahani
,
A. I.
, and
Goldstein
,
R. J.
,
1982
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME 1982 International Gas Turbine Conference and Exhibit
,
American Society of Mechanical Engineers
, p.
V004T09A016
.
17.
San
,
J. Y.
,
Tsou
,
Y. M.
, and
Chen
,
Z. C.
,
2007
, “
Impingement Heat Transfer of Staggered Arrays of Air Jets Confined in a Channel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3718
3727
. 10.1016/j.ijheatmasstransfer.2007.02.027
18.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
(
1
), pp.
123
133
. 10.1115/1.2836593
19.
Rutledge
,
J. L.
,
King
,
P. I.
, and
Rivir
,
R. B.
,
2012
, “
Influence of Film Cooling Unsteadiness on Turbine Blade Leading Edge Heat Flux
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071901
. 10.1115/1.4005978
20.
Zimmer
,
V. J.
,
Rutledge
,
J. L.
,
Knieriem
,
C.
, and
Ou
,
S.
,
2014
, “
The Influence of Coolant Unsteadiness on Impingement Heat Transfer
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, American Society of Mechanical Engineers Digital Collection.
21.
Herwig
,
H.
, and
Middelberg
,
G.
,
2008
, “
The Physics of Unsteady Jet Impingement and Its Heat Transfer Performance
,”
Acta Mechanica
,
201
(
1–4
), pp.
171
187
. 10.1007/s00707-008-0080-0
22.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
. 10.1115/1.3244463
23.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2020
, “
Numerical Investigation of Heat Transfer From a Plane Surface due to Turbulent Annular Swirling Jet Impingement
,”
Int. J. Therm. Sci.
,
151
, pp.
1
14
. 10.1016/j.ijthermalsci.2019.106257
24.
Schroder
,
A.
,
Ou
,
S.
, and
Ghia
,
U.
,
2011
, “
Experimental Study of Impingement Cooling Jet Array Using an Infrared Thermography Technique
,”
J. Thermophys. Heat Transfer
,
6019
, pp.
1
11
. 10.2514/6.2011-6019
You do not currently have access to this content.