Abstract

A comprehensive experimental investigation is conducted to evaluate the performance of a new flux-enhanced compact water gap membrane distillation (WGMD) module design with gap circulation and cooling for water desalination. The new design uses a separate circulation loop to circulate the gap water, and a built-in heat exchanger coil implanted inside the coolant stream channel for cooling the circulated gap water. The WGMD modules with circulation and with circulation and cooling are compared with conventional WGMD without circulation. Variations of distillate flux, temperatures, and energy consumption are presented at different design operating conditions. Circulation and cooling of the gap water greatly enhance the output flux due to gap water motion and increase the temperature difference between membrane surfaces. However, the enhancement in flux was achieved at the expense of energy consumption. Circulation and cooling of gap water are more effective with bigger gap widths. Feed flowrate showed significant effects with gap water circulation and cooling. The electrical specific energy consumption (SEC) showed the best value of 7.9 and 8.8 kWh/m3 at a feed temperature of 70 °C for both conventional WGMD and WGMD with circulation modules, while the best value of SEC for the WGMD module with gap circulation and cooling was 9.4 kWh/m3 at a feed temperature of 80 °C.

References

1.
Khayet
,
M.
, and
Matsuura
,
T.
,
2011
,
“Membrane Distillation: Principles and Applications.”
Elsevier
,
New York
.
2.
Alkhudhiri
,
A.
,
Darwish
,
N.
, and
Hilal
,
N.
,
2012
, “
Membrane Distillation: A Comprehensive Review
,”
Desalination
,
287
, pp.
2
18
. 10.1016/j.desal.2011.08.027
3.
Alklaibi
,
A. M.
, and
Noam
,
L.
,
2004
, “
Membrane Distillation Desalination: Status and Potential
,”
Desalination
,
171
(
2
), pp.
111
131
. 10.1016/j.desal.2004.03.024
4.
Banat
,
F. A.
, and
Simandl
,
J.
,
1998
, “
Desalination by Membrane Distillation: A Parametric Study
,”
Sep. Sci. Technol.
,
33
(
2
), pp.
201
226
. 10.1080/01496399808544764
5.
Lawal
,
D. U.
,
Antar
,
M. A.
,
Khalifa
,
A.
,
Zubair
,
S. M.
, and
Al-Sulaiman
,
F.
,
2020
, “
Experımental Investigation of Heat Pump Driven Humidification Dehumidification Desalination System for Water Desalination and Space Conditioning
,”
Desalination
,
475
, p.
114199
. 10.1016/j.desal.2019.114199
6.
Dehghani
,
S.
,
Mahmoudi
,
F.
,
Date
,
A.
, and
Akbarzadeh
,
A.
,
2020
, “
Experimental Performance Evaluation of Humidification–Dehumidification System With Direct-Contact Dehumidifier
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012005
. 10.1115/1.4044551
7.
Salamat
,
Y.
,
Rios Perez
,
C. A.
, and
Hidrovo
,
C.
,
2017
, “
Performance Improvement of Capacitive Deionization for Water Desalination Using a Multistep Buffered Approach
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032003
. 10.1115/1.4035067
8.
Jihye
,
K.
,
Jijung
,
L.
, and
Joon
,
K.
,
2012
, “
Overview of Pressure-Retarded Osmosis (PRO) Process and Hybrid Application to Seawater Reverse Osmosis Process
,”
Desalin. Water Treat.
,
43
(
1–3
), pp.
193
200
. 10.1080/19443994.2012.672170
9.
Arias
,
F. J.
,
2018
, “
Deliberate Salinization of Seawater for Desalination of Seawater
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032004
. 10.1115/1.4038053
10.
Akther
,
N.
,
Sodiq
,
A.
,
Giwa
,
A.
,
Daer
,
S.
,
Arafat
,
H. A.
, and
Hasan
,
S. W.
,
2015
, “
Recent Advancements in Forward Osmosis Desalination: A Review
,”
Chem. Eng. J.
,
281
, pp.
502
522
. 10.1016/j.cej.2015.05.080
11.
Qtaishat
,
M. R.
, and
Banat
,
F.
,
2013
, “
Desalination by Solar Powered Membrane Distillation Systems
,”
Desalination
,
308
, pp.
186
197
. 10.1016/j.desal.2012.01.021
12.
Schwantes
,
R.
,
Cipollina
,
A.
,
Gross
,
F.
,
Koschikowski
,
J.
,
Pfeifle
,
D.
,
Rolletschek
,
M.
, and
Subielac
,
V.
,
2013
, “
Membrane Distillation: Solar and Waste Heat Driven Demonstration Plants for Desalination
,”
Desalination
,
323
, pp.
93
106
. 10.1016/j.desal.2013.04.011
13.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
. 10.1115/1.4026915
14.
Al-Zoubi
,
H.
,
Al-Amri
,
F.
,
Khalifa
,
A. E.
,
Al-Zoubi
,
A.
,
Abid
,
M.
,
Younis
,
E.
, and
Mallicke
,
T.
,
2018
, “
A Comprehensive Review of Air Gap Membrane Distillation Process
,”
Desalin. Water Treat.
,
110
, pp.
27
64
. 10.5004/dwt.2018.22184
15.
Khalifa
,
A. E.
,
2015
, “
Water and Air Gap Membrane Distillation for Water Desalination—An Experimental Comparative Study
,”
Sep. Purif. Technol.
,
141
, pp.
276
284
. 10.1016/j.seppur.2014.12.007
16.
Essalhi
,
M.
, and
Khayet
,
M.
,
2014
, “
Application of a Porous Composite Hydrophobic/Hydrophilic Membrane in Desalination by Air Gap and Liquid Gap Membrane Distillation: A Comparative Study
,”
Sep. Purif. Technol.
,
133
, pp.
176
186
. 10.1016/j.seppur.2014.07.006
17.
Cheng
,
L.
,
Zhao
,
Y.
,
Li
,
P.
,
Li
,
W.
, and
Wang
,
F.
,
2018
, “
Comparative Study of Air Gap and Permeate Gap Membrane Distillation Using Internal Heat Recovery Hollow Fiber Membrane Module
,”
Desalination
,
426
, pp.
42
49
. 10.1016/j.desal.2017.10.039
18.
Francis
,
L.
,
Ghaffour
,
N.
,
Alsaadi
,
A. A
, and
Amy
,
G. L.
,
2013
, “
Material Gap Membrane Distillation: A New Design for Water Vapor Flux Enhancement
,”
J. Membr. Sci.
,
448
, pp.
240
247
. 10.1016/j.memsci.2013.08.013
19.
Mahmoudi
,
F.
,
Moazami
,
G. M.
,
Dehghani
,
S.
, and
Akbarzadeh
A.
,
2017
, “
Experimental and Theoretical Study of a Lab Scale Permeate Gap Membrane Distillation Setup for Desalination
,”
Desalination
,
19
, pp.
197
210
. 10.1016/j.desal.2017.06.013
20.
Swaminathan
,
J.
,
Won
,
H. W.
,
Warsinger
,
D. M.
,
Almarzooqi
,
F. A.
,
Arafat
,
H. A.
, and
Lienhard
,
V. J. H.
,
2016
, “
Energy Efficiency of Permeate Gap and Novel Conductive Gap Membrane Distillation
,”
J. Membr. Sci.
,
502
, pp.
171
178
. 10.1016/j.memsci.2015.12.017
21.
Im
,
B. G.
,
Lee
,
J. G.
,
Kim
,
Y. D.
, and
Kim
,
W. S.
,
2018
, “
Theoretical Modeling and Simulation of AGMD and LGMD Desalination Processes Using a Composite Membrane
,”
J. Membr. Sci.
,
565
, pp.
14
24
. 10.1016/j.memsci.2018.08.006
22.
Alawad
,
S.
, and
Khalifa
,
A.
,
2019
, “
Analysis of Water Gap Membrane Distillation Process for Water Desalination
,”
Desalination
,
468
, p.
114088
. 10.1016/j.desal.2019.114088
23.
Khalifa
,
A. E.
, and
Al-Awad
,
S. M.
,
2018
, “
Air Gap and Water Gap Multistage Membrane Distillation for Water Desalination
,”
Desalination
,
437
, pp.
175
183
. 10.1016/j.desal.2018.03.012
You do not currently have access to this content.