Abstract

Many coal mines are located at the middle and high latitudes. In winter, coal mining facilities may be operated under the freezing conditions. Burning coal for hot water is usually used to heat up the facilities, which is not environmentally friendly and energy efficient. Currently, the ground source heat pumps and other new technologies have been applied for heating in coal mines and have achieved some success. However, the working characteristics and costs of these technologies are not suitable for the antifreeze at the wellhead. Heat pipe technology has the following advantages: automatic operation with the change of atmosphere temperature (AMT) and low cost of construction and maintenance, which can overcome the drawbacks of the aforementioned technologies. In this article, a heating system based on heat pipe technology has been designed and modeled. The system extracts heat from the shallow normal temperature zone (NTZ) to automatically heat the coal wellhead in winter. For the heating system, the effects of AMT, the temperature of NTZ, the frozen zone thickness (FZT), the thermal conductivity, and the heat pipe quantity (HPQ) on the heating performance have been modeled and investigated using comsol multiphysics. The modeling results have been analyzed and discussed. The modeling data showed that the system based on heat pipes could meet the antifreeze requirements for the designed system during the winter period. The wellhead heating system proposed in this article may achieve the purpose of replacing fossil energy with shallow geothermal energy.

References

1.
Gong
,
C.
,
Lei
,
S.
,
Bian
,
Z. F.
, and
Ying
,
L.
,
2019
, “
Analysis of the Development of an Erosion Gully in an Open-Pit Coal Mine Dump During a Winter Freeze-Thaw Cycle by Using Low-Cost UAVs
,”
Remote Sens.
,
11
(
11
), p.
1356
. 10.3390/rs11111356
2.
Lin
,
B.
,
Wang
,
Z.
,
Liu
,
Y.
,
Zhu
,
Y.
, and
Ouyang
,
Q.
,
2016
, “
Investigation of Winter Indoor Thermal Environment and Heating Demand of Urban Residential Buildings in China’s Hot Summer—Cold Winter Climate Region
,”
Build. Environ.
,
101
, pp.
9
18
. 10.1016/j.buildenv.2016.02.022
3.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072001
.10.1115/1.4042240
4.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2019
, “
A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.10.1115/1.4041544
5.
Mokheimer
,
E. M. A.
, and
Dabwan
,
Y. N.
,
2019
, “
Performance Analysis of Integrated Solar Tower With a Conventional Heat and Power Co-Generation Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021201
.10.1115/1.4041409
6.
Cheng
,
W. M.
,
Qi
,
Y. D.
,
Yu
,
Y. B.
, and
Pan
,
G.
,
2013
, “
Integrated Utilization of Low-Grade Thermal Energy in Hot Coal Mine
,”
J. Coal Sci. Eng.
,
19
(
1
), pp.
26
32
. 10.1007/s12404-013-0105-8
7.
Storch
,
T.
,
Grab
,
T.
,
Weickert
,
T.
,
Gross
,
U.
, and
Kasper
,
M.
,
2012
, “
Wetting and Film Behavior of Propane Inside Geothermal Heat Pipes
,”
16th International Heat Pipe Conference
,
Lyon, France
,
May 20–24
, pp.
2
4
.
8.
Watzlaf
,
G. R.
, and
Ackman
,
T. E.
,
2006
, “
Underground Mine Water for Heating and Cooling Using Geothermal Heat Pump Systems
,”
Mine Water Environ.
,
25
(
1
), pp.
1
14
. 10.1007/s10230-006-0103-9
9.
Athresh
,
A. P.
,
Al-Habaibeh
,
A.
, and
Parker
,
K.
,
2016
, “
The Design and Evaluation of an Open Loop Ground Source Heat Pump Operating in an Ochre-Rich Coal Mine Water Environment
,”
Int. J. Coal Geol.
,
164
, pp.
69
76
. 10.1016/j.coal.2016.04.015
10.
Ippolito
,
F.
, and
Venturini
,
M.
,
2019
, “
Micro Combined Heat and Power System Transient Operation in a Residential User Microgrid
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042006
.10.1115/1.4042231
11.
Hamanah
,
W. M. A.
,
Kassas
,
M.
,
Mokheimer
,
E. M. A.
,
Ahmed
,
C. B.
, and
Said
,
S. A. M.
,
2019
, “
Comparison of Energy Consumption for Residential Thermal Models With Actual Measurements
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032002
. https://doi.org/10.1115/1.4041663
12.
Hähnlein
,
S.
,
Bayer
,
P.
,
Ferguson
,
G.
, and
Blum
,
P.
,
2013
, “
Sustainability and Policy for the Thermal Use of Shallow Geothermal Energy
,”
Energy Policy
,
59
, pp.
914
925
. 10.1016/j.enpol.2013.04.040
13.
Gupta
,
N.K
,
Tiwari
,
A.K
, and
Ghosh
,
S.
,
2013
, “
Sustainability and Policy for the Thermal Use of Shallow Geothermal Energy
,”
Experimental Thermal and Fluid Science: Int. J. Exp. Heat Trans. Thermody. Fluid Mech.
,
90
, pp.
84
100
. 10.1016/j.expthermflusci.2017.08.013
14.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes. Modeling, Testing, and Applications
,
Wiley
,
New York
.
15.
Faghri
,
A.
,
1995
, “
Heat Pipe Science and Technology
,”
Fuel Energy Abstr.
,
36
(
4
), p.
285
.
16.
Chaudhry
,
H. N.
,
Hughes
,
B. R.
, and
Ghani
,
S. A.
,
2012
, “
A Review of Heat Pipe Systems for Heat Recovery and Renewable Energy Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2249
2259
. 10.1016/j.rser.2012.01.038
17.
Li
,
B.
,
Deng
,
J.
,
Xiao
,
Y.
,
Zhai
,
X.
,
Shu
,
C. M.
, and
Gao
,
W.
,
2018
, “
Heat Transfer Capacity of Heat Pipes: An Application in Coalfield Wildfire in China
,”
Heat Mass Transfer
,
54
(
6
), pp.
1
12
.
18.
Lim
,
H.
,
Kim
,
C.
,
Cho
,
Y.
, and
Kim
,
M.
,
2017
, “
Energy Saving Potentials From the Application of Heat Pipes on Geothermal Heat Pump System
,”
Appl. Therm. Eng.
,
126
, pp.
1191
1198
.
19.
Bertani
,
R.
,
2012
, “
Geothermal Power Generation in the World 2005–2010 Update Report
,”
Geothermics
,
41
, pp.
1
29
. 10.1016/j.geothermics.2011.10.001
20.
Lachenbruch
,
A. H.
, and
Marshall
,
B. V.
,
1986
, “
Changing Climate: Geothermal Evidence From Permafrost in the Alaskan Arctic
,”
Science
,
234
(
4777
), pp.
689
696
. 10.1126/science.234.4777.689
21.
Shortall
,
R.
,
Davidsdottir
,
B.
, and
Axelsson
,
G.
,
2015
, “
Geothermal Energy for Sustainable Development: A Review of Sustainability Impacts and Assessment Frameworks
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
391
406
. 10.1016/j.rser.2014.12.020
22.
Li
,
K.
,
2019
, “
A Special Issue on Geothermal Energy and Its Application
,”
Math. Geosci.
,
51
(
3
), pp.
267
269
.
23.
Bu
,
X.
,
Ma
,
W.
, and
Li
,
H.
,
2012
, “
Geothermal Energy Production Utilizing Abandoned Oil and Gas Wells
,”
Renewable Energy
,
41
, pp.
80
85
. 10.1016/j.renene.2011.10.009
24.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal Sources—Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
. 10.1016/j.energy.2013.11.057
25.
Vasiliev
,
L. L.
,
Vaaz
,
S. L.
,
Grakovich
,
L. P.
, and
Sedelkin
,
V. M.
,
1982
, “
Heat Transfer Studies for Heat Pipe Cooling and Freezing of Ground
,”
Adv. Heat Pipe Technol.
, pp.
63
71
. 10.1016/B978-0-08-027284-9.50012-7
26.
Ochsner
,
K.
,
2008
, “
Carbon Dioxide Heat Pipe in Conjunction With a Ground Source Heat Pump (GSHP)
,”
Appl. Therm. Eng.
,
28
(
16
), pp.
2077
2082
. 10.1016/j.applthermaleng.2008.04.023
27.
Wu
,
J.
,
Ma
,
W.
,
Sun
,
Z.
, and
Wen
,
Z.
,
2010
, “
In-Situ Study on Cooling Effect of the Two-Phase Closed Thermosyphon and Insulation Combinational Embankment of the Qinghai-Tibet Railway
,”
Cold Reg. Sci. Technol.
,
60
(
3
), pp.
234
244
. 10.1016/j.coldregions.2009.11.002
28.
Mcguinness
,
M. J.
,
Blakeley
,
M.
,
Pruess
,
K.
, and
O’Sullivan
,
M. J.
,
1993
, “
Geothermal Heat Pipe Stability: Solution Selection by Upstreaming and Boundary Conditions
,”
Transp. Porous Media
,
11
(
1
), pp.
71
100
. 10.1007/BF00614636
29.
Kasanický
,
M.
,
Gavlas
,
S.
,
Vantúch
,
M
,
Malcho
,
M.
,
Dančová
,
P.
, and
Novontý
,
P.
,
2013
, “
Possibilities of Using Carbon Dioxide as Fillers for Heat Pipe to Obtain low Potential Geothermal Energy
,”
EPJ Web of Conferences
,
45
(
01123
), pp.
1
5
. 10.1051/epjconf/20134501123
30.
Kerrigan
,
K.
,
Jouhara
,
H.
,
O’Donnell
,
G. E.
, and
Robinson
,
A. J.
,
2011
, “
Heat Pipe-Based Radiator for Low Grade Geothermal Energy Conversion in Domestic Space Heating
,”
Simul. Modell. Pract. Theory
,
19
(
4
), pp.
1154
1163
. 10.1016/j.simpat.2010.05.020
31.
Zheng
,
G. R.
, and
Yang
,
J.
,
2011
, “
Experiment and Numerical Simulation on Geothermal Utilization Based on Low Temperature Heat Pipe
,”
Renewable Energy Resour.
,
29
(
3
), pp.
104
107
.
32.
Franco
,
A.
, and
Vaccaro
,
M.
,
2013
, “
On the Use of Heat Pipe Principle for the Exploitation of Medium-Low Temperature Geothermal Resources
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
189
199
. 10.1016/j.applthermaleng.2013.05.024
33.
Grab
,
T.
,
Storch
,
T.
,
Braune
,
S.
,
Gross
,
U.
, and
Wagner
,
S.
,
2011
, “
Performance of a Geothermal Heat Pipe Using Propane
,”
Proceeding of VIII Minsk Int 2011 “Heat Pipes, Heat Pumps, Refrigerators, Power Sources
,
Minsk
,
Sept. 12–15
.
34.
Al-Khoury
,
R.
,
Bonnier
,
P. G.
, and
Brinkgreve
,
R. B. J.
,
2005
, “
Efficient Finite Element Formulation for Geothermal Heating Systems. Part I: Steady State
,”
Int. J. Numer. Methods Eng.
,
63
(
7
), pp.
988
1013
. 10.1002/nme.1313
35.
Halaj
,
E
,
Pajak
,
L
, and
Papiernik
,
B
,
2020
, “
Finite Element Modeling of Geothermal Source of Heat Pump in Long-Term Operation
,”
Energies
,
13
(
1314
), pp.
1
18
. 10.3390/en13061341
36.
Borovic
,
S.
,
Terzic
,
J.
, and
Urumovic
,
K.
,
2019
, “
Conditions for Shallow Geothermal Energy Utilization in Dinaric Karst Terrains in Croatia
,”
Environ. Earth Sci.
,
78
(
7
), pp.
245.1
245.11
.
37.
Yang
,
H. J.
,
Dong
,
J. X.
,
Sun
,
D.
, and
Huang
,
R.
,
2019
, “
Characteristics of Shallow Geothermal Fields in Major Cities of Tibet Autonomous Region
,”
J. Groundwater Sci. Eng.
,
7
(
1
), pp.
80
88
.
38.
Abu-Hamdeh
,
N. H.
, and
Reeder
,
R. C.
,
2000
, “
Soil Thermal Conductivity : Effects of Density, Moisture, Salt Concentration, and Organic Matter
,”
Soil Sci. Soc. Am. J.
,
64
(
4
), pp.
1285
1290
. 10.2136/sssaj2000.6441285x
39.
Peterson
,
G. P.
, and
Fletcher
,
L. S.
,
2013
, “
Effective Thermal Conductivity of Sintered Heat Pipe Wicks
,”
J. Thermophys. Heat Transfer
,
1
(
4
), pp.
343
347
. 10.2514/3.50
You do not currently have access to this content.