Abstract

This work presents the prediction of thermal drawdown of an enhanced geothermal system (EGS) using artificial neural network (ANN). A three-dimensional numerical model of EGS was developed to generate the training and testing data sets for ANN. We have performed a quantitative study of geothermal energy production for various injection operating conditions and reservoir fracture aperture. Input parameters for ANN include temperature, mass flux, pressure, and fracture transmissivity, while the production well temperature is the output parameter. The Levenberg–Marquardt back-propagation learning algorithm, the tan-sigmoid, and the linear transfer function were used for the ANN optimization. The best results were obtained with an ANN architecture composed of eight hidden layers and 20 neurons in the hidden layer, which made it possible to predict the production temperature with a satisfactory range (R2 > 0.99). An appropriate accuracy of the ANN model was obtained with a percentage error less than (± 4.5). The results from the numerical simulations suggest that fracture transmissivity has less effect on thermal drawdown than the injection mass flux and temperature. From our results, we confirm that ANN modeling may predict the thermal drawdown of an EGS system with high accuracy.

References

1.
Pandey
,
S. N.
,
Vishal
,
V.
, and
Chaudhuri
,
A.
,
2018
, “
Geothermal Reservoir Modeling in a Coupled Thermo-Hydro-Mechanical-Chemical Approach: A Review
,”
Earth Sci. Rev.
,
185
, pp.
1157
1169
. 10.1016/j.earscirev.2018.09.004
2.
Salimzadeh
,
S.
, and
Nick
,
H. M.
,
2019
, “
A Coupled Model for Reactive Flow Through Deformable Fractures in Enhanced Geothermal Systems
,”
Geothermics
,
81
, pp.
88
100
. 10.1016/j.geothermics.2019.04.010
3.
Pandey
,
S. N.
,
Chaudhuri
,
A.
, and
Kelkar
,
S.
,
2017
, “
A Coupled Thermo-Hydro-Mechanical Modeling of Fracture Aperture Alteration and Reservoir Deformation During Heat Extraction From a Geothermal Reservoir
,”
Geothermics
,
65
, pp.
17
31
. 10.1016/j.geothermics.2016.08.006
4.
Gudula
,
M.
, and
Govindarajan
,
S. K.
,
2020
, “
Numerical Modeling of Coupled Fluid Flow and Geomechanical Stresses in a Petroleum Reservoir
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063006
. 10.1115/1.4045832
5.
Guo
,
B.
,
Fu
,
P.
,
Hao
,
Y.
,
Peters
,
C. A.
, and
Carrigan
,
C. R.
,
2016
, “
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
,”
Geothermics
,
61
, pp.
46
62
. 10.1016/j.geothermics.2016.01.004
6.
Pandey
,
S. N.
, and
Chaudhuri
,
A.
,
2017
, “
The Effect of Heterogeneity on Heat Extraction and Transmissivity Evolution in a Carbonate Reservoir: A Thermo-Hydro-Chemical Study
,”
Geothermics
,
69
, pp.
45
54
. 10.1016/j.geothermics.2017.04.004
7.
Zheng
,
J.
,
Zheng
,
L.
,
Liu
,
H. H.
, and
Ju
,
Y.
,
2015
, “
Relationships Between Permeability, Porosity and Effective Stress for Low-Permeability Sedimentary Rock
,”
Int. J. Rock Mech. Min.Sci.
,
78
, pp.
304
318
. 10.1016/j.ijrmms.2015.04.025
8.
Davies
,
J. P.
, and
Davies
,
D. K.
,
1999
, “
Stress-Dependent Permeability: Characterization and Modeling
,”
SPE Annual Technical Conference and Exhibition
,
Soc. Petro. Engg.
, SPE-56813-MS.
9.
Taron
,
J.
, and
Elsworth
,
D.
,
2009
, “
Thermal–Hydrologic–Mechanical–Chemical Processes in the Evolution of Engineered Geothermal Reservoirs
,”
Int. J. Rock Mech. Min. Sci.
,
46
(
5
), pp.
855
864
. 10.1016/j.ijrmms.2009.01.007
10.
Pandey
,
S. N.
, and
Vishal
,
V.
,
2017
, “
Sensitivity Analysis of Coupled Processes and Parameters on the Performance of Enhanced Geothermal Systems
,”
Sci. Rep.
,
7
(
1
), p.
17057
. 10.1038/s41598-017-14273-4
11.
Franco
,
A.
, and
Vaccaro
,
M.
,
2014
, “
Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
987
1002
. 10.1016/j.rser.2013.11.041
12.
Gringarten
,
A. C.
, and
Witherspoon
,
P. A.
,
1973
, “
Extraction of Heat From Multiple-Fractured Dry Hot Rock
,”
Geothermics
,
2
(
3–4
), pp.
119
122
. 10.1016/0375-6505(73)90018-7
13.
Gringarten
,
A. C.
,
Witherspoon
,
P. A.
, and
Onishi
,
Y.
,
1975
, “
Theory of Heat Extraction From Fractured Hot Dry Rock
,”
J. Geophys. Res.
,
80
(
8
), pp.
1120
1124
. 10.1029/JB080i008p01120
14.
Fox
,
D. B.
,
Sutter
,
D.
,
Beckers
,
K. F.
,
Lukawski
,
M. Z.
,
Koch
,
D. L.
,
Anderson
,
B. J.
, and
Tester
,
J. W.
,
2013
, “
Sustainable Heat Farming: Modeling Extraction and Recovery in Discretely Fractured Geothermal Reservoirs
,”
Geothermics
,
46
, pp.
42
54
. 10.1016/j.geothermics.2012.09.001
15.
Taleghani
,
A. D.
,
2013
, “
An Improved Closed-Loop Heat Extraction Method From Geothermal Resources
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042904
. 10.1115/1.4023175
16.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041203
. 10.1115/1.4030111
17.
Li
,
T.
,
Shiozawa
,
S.
, and
McClure
,
M. W.
,
2016
, “
Thermal Breakthrough Calculations to Optimize Design of a Multiple-Stage Enhanced Geothermal System
,”
Geothermics
,
64
, pp.
455
465
. 10.1016/j.geothermics.2016.06.015
18.
Babaei
,
M.
, and
Nick
,
H. M.
,
2019
, “
Performance of low-Enthalpy Geothermal Systems: Interplay of Spatially Correlated Heterogeneity and Well-Doublet Spacings
,”
Appl. Energy
,
253
, p.
113569
. 10.1016/j.apenergy.2019.113569
19.
Qu
,
Z. Q.
,
Zhang
,
W.
, and
Guo
,
T. K.
,
2017
, “
Influence of Different Fracture Morphology on Heat Mining Performance of Enhanced Geothermal Systems Based on COMSOL
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18263
18278
. 10.1016/j.ijhydene.2017.04.168
20.
Kalinina
,
E. A.
,
McKenna
,
S. A.
,
Hadgu
,
T.
, and
Lowry
,
T. S.
,
2012
, “
Analysis of the Effects of Heterogeneity on Heat Extraction in an EGS Represented With the Continuum Fracture Model
,”
Proc. 37th Work. Geothermal Reservoir Eng.
,
Stanford University
,
Stanford, CA
, Jan. 30—Feb. 1, SGP-TR-194.
21.
Hadgu
,
T.
,
Kalinina
,
E.
, and
Lowry
,
T. S.
,
2016
, “
Modeling of Heat Extraction From Variably Fractured Porous Media in Enhanced Geothermal Systems
,”
Geothermics
,
61
, pp.
75
85
. 10.1016/j.geothermics.2016.01.009
22.
Crooijmans
,
R. A.
,
Willems
,
C. J. L.
,
Nick
,
H. M.
, and
Bruhn
,
D. F.
,
2016
, “
The Influence of Facies Heterogeneity on the Doublet Performance in Low-Enthalpy Geothermal Sedimentary Reservoirs
,”
Geothermics
,
64
, pp.
209
219
. 10.1016/j.geothermics.2016.06.004
23.
Yu
,
B.
,
Kim
,
D.
,
Cho
,
H.
, and
Mago
,
P.
,
2020
, “
A Nonlinear Autoregressive With Exogenous Inputs Artificial Neural Network Model for Building Thermal Load Prediction
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050902
. 10.1115/1.4045543
24.
Zhang
,
Z.
,
Liu
,
Y.
,
Cao
,
L.
, and
Si
,
H.
,
2020
, “
A Forecasting Method of District Heat Load Based on Improved Wavelet Neural Network
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102102
. 10.1115/1.4047020
25.
Pasquier
,
P.
,
Zarrella
,
A.
, and
Labib
,
R.
,
2018
, “
Application of Artificial Neural Networks to Near-Instant Construction of Short-Term g-Functions
,”
Appl. Therm. Eng.
,
143
, pp.
910
921
. 10.1016/j.applthermaleng.2018.07.137
26.
Zhou
,
S.
,
Chu
,
X.
,
Cao
,
S.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2020
, “
Prediction of the Ground Temperature With ANN, LS-SVM and Fuzzy LS-SVM for GSHP Application
,”
Geothermics
,
84
, p.
101757
. 10.1016/j.geothermics.2019.101757
27.
Van
,
S. L.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
. 10.1115/1.4038054
28.
Yuan
,
B.
,
Tan
,
Y. J.
,
Mudunuru
,
M. K.
,
Marcillo
,
O. E.
,
Delorey
,
A. A.
,
Roberts
,
P. M.
,
Webster
,
J. D.
,
Gammans
,
C. N.
,
Karra
,
S.
,
Guthrie
,
G. D.
, and
Johnson
,
P. A.
,
2019
, “
Using Machine Learning to Discern Eruption in Noisy Environments: A Case Study Using CO2-Driven Cold-Water Geyser in Chimayó, New Mexico
,”
Seismol. Res. Lett.
,
90
(
2A
), pp.
591
603
. 10.1785/0220180306
29.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
. 10.1115/1.4039270
30.
Lee
,
K. J.
,
2020
, “
Data-driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery
,”
ASME J. Energy Resour. Technol.
,
142
(12), p.
123301
.10.1115/1.4047309
31.
Nwachukwu
,
A.
,
Jeong
,
H.
,
Pyrcz
,
M.
, and
Lake
,
L. W.
,
2018
, “
Fast Evaluation of Well Placements in Heterogeneous Reservoir Models Using Machine Learning
,”
J. Pet. Sci. Eng.
,
163
, pp.
463
475
. 10.1016/j.petrol.2018.01.019
32.
Zimmerman
,
R. W.
,
Al-Yaarubi
,
A.
,
Pain
,
C. C.
, and
Grattoni
,
C. A.
,
2004
, “
Non-linear Regimes of Fluid Flow in Rock Fractures
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
3
), p.
384
. 10.1016/j.ijrmms.2003.12.045
33.
Zyvoloski
,
G.
,
2007
,
FEHM: A Control Volume Finite Element Code for Simulating Subsurface Multi-phase Multi-fluid Heat and Mass Transfer
, May 18, Technical Report LAUR-07-3359 (2007).
34.
Singh
,
M.
,
Chaudhuri
,
A.
,
Stauffer
,
P. H.
, and
Pawar
,
R.
,
2020
, “
Simulation of Gravitational Instability and Thermo-Solutal Convection During the Dissolution of CO2 in Deep Storage Reservoirs
,”
Water Res. Res.
,
56
. p. e2019WR026126.
35.
Kelkar
,
S.
,
Ding
,
M.
,
Chu
,
S.
,
Robinson
,
B. A.
,
Arnold
,
B.
,
Meijer
,
A.
, and
Eddebbarh
,
A.-A.
,
2010
, “
Modeling Solute Transport Through Saturated Zone Groundwater at 10 km Scale: Example From the Yucca Mountain License Application
,”
J. Contam. Hydrol.
,
117
(
1–4
), pp.
7
25
. 10.1016/j.jconhyd.2010.05.003
36.
Kelkar
,
S.
,
Lewis
,
K.
,
Karra
,
S.
,
Zyvoloski
,
G.
,
Rapaka
,
S.
,
Viswanathan
,
H.
,
Mishra
,
P. K.
,
Chu
,
S.
,
Coblentz
,
D.
, and
Pawar
,
R.
,
2014
, “
A Simulator for Modeling Coupled Thermo-Hydro-Mechanical Processes in Subsurface Geological Media
,”
Int. J. Rock Mech. Min. Sci.
,
70
, pp.
569
580
. 10.1016/j.ijrmms.2014.06.011
37.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2019
, “Thermophysical Properties of Fluid Systems,”
NIST Chemistry Webbook
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds., NIST Standard Reference Database Number 69, (20899),
National Institute of Standards and Technology
,
Gaithersburg, MD
.
38.
Bengio
,
Y.
, and
LeCun
,
Y.
,
2007
, “
Scaling Learning Algorithms Towards AI
,”
Large-scale Kernel Mach.
,
34
, pp.
1
41
.
39.
Baria
,
R.
,
Baumgärtner
,
J.
,
Rummel
,
F.
,
Pine
,
R. J.
, and
Sato
,
Y.
,
1999
, “
HDR/HWR Reservoirs: Concepts, Understanding and Creation
,”
Geothermics
,
28
(
4–5
), pp.
533
552
. 10.1016/S0375-6505(99)00045-0
You do not currently have access to this content.