Abstract

The majority of the geostatistical realizations ranking methods disregard the production history in selection of realizations, due to its requirement of high simulation run time. They also ignore to consider the degree of linear relationship between the “ranks based on the ranking measure” and “ranks based on the performance parameter” in choosing the employed ranking measure. To address these concerns, we propose an uncertainty quantification workflow, which includes two sequential stages of history matching and realization selection. In the first stage, production data are incorporated in the uncertainty quantification procedure through a history matching process. A fast simulator is employed to find the realizations with consistent flow behavior with the production history data in shorter time, compared to a comprehensive simulator. The selected realizations are the input of the second stage of the workflow, which can be any type of the realization selection method. In this study, we used the most convenient realization selection method, i.e., ranking of the realizations. To select the most efficient ranking measure, we investigated the degree of the linear correlation between the ranks based on the several ranking measures and the performance parameter. In addition, due to the shortcomings of the traditional ranking methods in uncertainty quantiles identification, a modified ranking method is introduced. This modification increases the certainty in the probability of the selected realizations. The obtained results on 3D close-to-real synthetic reservoir models revealed the capability of the modified ranking method in more accurate quantification of the uncertainty in reservoir performance prediction.

References

References
1.
Emami Niri
,
M.
,
2018
, “
3D and 4D Seismic Data Integration in Static and Dynamic Reservoir Modeling: A Review
,”
J. Pet. Sci. Technol.
,
8
(
2
), pp.
38
56
.
2.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2016
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
. 10.1115/1.4031446
3.
Kang
,
B.
,
Kim
,
S.
,
Jung
,
H.
,
Choe
,
J.
, and
Lee
,
K.
,
2019
, “
Efficient Assessment of Reservoir Uncertainty Using Distance-Based Clustering: A Review
,”
Energies
,
12
(
10
), p.
1859
. 10.3390/en12101859
4.
Li
,
S.
,
Deutsch
,
C. V.
, and
Si
,
J.
,
2012
, “
Ranking Geostatistical Reservoir Models With Modified Connected Hydrocarbon Volume
,”
Ninth International Geostatistics Congress
,
Oslo, Norway
,
June
, pp.
11
15
.
5.
Rahim
,
S.
,
Li
,
Z.
, and
Trivedi
,
J.
,
2015
, “
Reservoir Geological Uncertainty Reduction: An Optimization-Based Method Using Multiple Static Measures
,”
Math. Geosci.
,
47
(
4
), pp.
373
396
. 10.1007/s11004-014-9575-5
6.
Kelkar
,
M.
,
Perez
,
G.
, and
Chopra
,
A.
,
2002
,
Applied Geostatistics for Reservoir Characterization
,
Society of Petroleum Engineers
,
Richardson, TX
.
7.
Yazdi
,
M. M.
, and
Jensen
,
J. L.
,
2014
, “
Fast Screening of Geostatistical Realizations for SAGD Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
124
, pp.
264
274
. 10.1016/j.petrol.2014.09.030
8.
Ballin
,
P.
,
Journel
,
A.
, and
Aziz
,
K.
,
1992
, “
Prediction of Uncertainty in Reservoir Performance Forecast
,”
J. Can. Pet. Technol.
,
31
(
4
), pp.
52
62
. 10.2118/92-04-05
9.
Scheidt
,
C.
, and
Caers
,
J.
,
2009
, “
Representing Spatial Uncertainty Using Distances and Kernels
,”
Math. Geosci.
,
41
(
4
), pp.
397
419
. 10.1007/s11004-008-9186-0
10.
Scheidt
,
C.
, and
Caers
,
J.
,
2009
, “
Uncertainty Quantification in Reservoir Performance Using Distances and Kernel Methods—Application to a West Africa Deepwater Turbidite Reservoir
,”
SPE J.
,
14
(
4
), pp.
680
692
. 10.2118/118740-PA
11.
Shirangi
,
M. G.
, and
Durlofsky
,
L. J.
,
2016
, “
A General Method to Select Representative Models for Decision Making and Optimization Under Uncertainty
,”
Comput. Geosci.
,
96
, pp.
109
123
. 10.1016/j.cageo.2016.08.002
12.
Ani
,
M.
,
Oluyemi
,
G.
,
Petrovski
,
A.
, and
Rezaei-Gomari
,
S.
,
2019
, “
Ranking of Geostatistical Models and Uncertainty Quantification Using Signal Detection Principle (SDP)
,”
J. Pet. Sci. Eng.
,
174
, pp.
833
843
. 10.1016/j.petrol.2018.11.024
13.
Deutsch
,
C. V.
,
1998
, “
Fortran Programs for Calculating Connectivity of Three-Dimensional Numerical Models and for Ranking Multiple Realizations
,”
Comput. Geosci.
,
24
(
1
), pp.
69
76
. 10.1016/S0098-3004(97)00085-X
14.
McLennan
,
J.
, and
Deutsch
,
C. V.
,
2005
, “
Ranking Geostatistical Realizations by Measures of Connectivity
,”
SPE International Thermal Operations and Heavy Oil Symposium
,
Calgary, Alberta, Canada
,
Nov. 1–3
.
15.
Li
,
S.
, and
Deutsch
,
C. V.
,
2008
, “
A Petrel Plugin for Ranking Realizations, in Centre for Computational Geostatistics Report
,”
University of Alberta Canada
, pp.
1
8
.
16.
Fenik
,
D.
,
2010
, “
Practical Use of Multiple Geostatistical Realizations in Petroleum Engineering
,”
M.Sc. Dissertation
,
University of Alberta
.
17.
Fenik
,
D.
,
Nouri
,
A.
, and
Deutsch
,
C.
,
2009
, “
Criteria for Ranking Realizations in the Investigation of SAGD Reservoir Performance
,”
Canadian International Petroleum Conference
,
Calgary, Alberta
,
June 16–18
.
18.
Idrobo
,
E. A.
,
Choudhary
,
M. K.
, and
Datta-Gupta
,
A.
,
2000
, “
Swept Volume Calculations and Ranking of Geostatistical Reservoir Models Using Streamline Simulation
,”
SPE/AAPG Western Regional Meeting
,
Long Beach, CA
,
June 19–22
, Society of Petroleum Engineers.
19.
Ates
,
H.
,
Bahar
,
A.
,
Salem
,
S. E.-A.
,
Charfeddine
,
M.
, and
Kelkar
,
M. G.
,
2005
, “
Ranking and Upscaling of Geostatistical Reservoir Models Using Streamline Simulation: A Field Case Study
,”
SPE Reservoir Eval. Eng.
,
8
(
1
), pp.
22
32
. 10.2118/81497-PA
20.
Dehdari
,
V.
, and
Deutsch
,
C. V.
,
2012
, “
Ranking Reservoir Realizations Using SAGD Proxy and Gradual Deformation Method
,”
Centre Comput. Geostat. Rep.
14
, pp.
204-1
204-14
.
21.
Fedutenko
,
E.
,
Yang
,
C.
,
Card
,
C.
, and
Nghiem
,
L.
,
2013
, “
Optimization of SAGD Process Accounting for Geological Uncertainties Using Proxy Models
,”
Proceedings of CSPG/CSEG/CWLS GeoConvention
,
Calgary, AB
,
May 6–12
.
22.
Gilman
,
J. R.
,
Meng
,
H. Z.
,
Uland
,
M. J.
,
Dzurman
,
P. J.
, and
Cosic
,
S.
,
2002
, “
Statistical Ranking of Stochastic Geomodels Using Streamline Simulation: A Field Application
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 29–Oct. 2
, Society of Petroleum Engineers.
23.
Sharifi
,
M.
,
Kelkar
,
M.
,
Bahar
,
A.
, and
Slettebo
,
T.
,
2014
, “
Dynamic Ranking of Multiple Realizations by Use of the Fast-Marching Method
,”
SPE J.
,
19
(
6
), pp.
1069
1082
. 10.2118/169900-PA
24.
Shi
,
J.
,
Vishal
,
V.
, and
Leung
,
J. Y.
,
2014
, “
Uncertainty Assessment of Vapex Performance in Heterogeneous Reservoirs Using a Semi-Analytical Proxy Model
,”
J. Pet. Sci. Eng.
,
122
, pp.
290
303
. 10.1016/j.petrol.2014.07.022
25.
Deutsch
,
C. V.
, and
Srinivasan
,
S.
,
1996
, “
Improved Reservoir Management Through Ranking Stochastic Reservoir Models
,”
SPE/DOE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 21–24
, Society of Petroleum Engineers.
26.
Yang
,
C.
,
Card
,
C.
,
Nghiem
,
L. X.
, and
Fedutenko
,
E.
,
2011
, “
Robust Optimization of SAGD Operations Under Geological Uncertainties
,”
SPE Reservoir Simulation Symposium
,
The Woodlands, TX
,
Feb. 21–23
, Society of Petroleum Engineers.
27.
Formentin
,
H. N.
,
Almeida
,
F. l. R.
,
Avansi
,
G. D.
,
Maschio
,
C.
,
Schiozer
,
D. J.
,
Caiado
,
C.
,
Vernon
,
I.
, and
Goldstein
,
M.
,
2019
, “
Gaining More Understanding About Reservoir Behavior Through Assimilation of Breakthrough Time and Productivity Deviation in the History Matching Process
,”
J. Pet. Sci. Eng.
,
173
, pp.
1080
1096
. 10.1016/j.petrol.2018.10.045
28.
Arnold
,
D.
,
Demyanov
,
V.
,
Rojas
,
T.
, and
Christie
,
M.
,
2019
, “
Uncertainty Quantification in Reservoir Prediction: Part 1—Model Realism in History Matching Using Geological Prior Definitions
,”
Math. Geosci.
,
51
(
2
), pp.
209
240
. 10.1007/s11004-018-9774-6
29.
Deutsch
,
C.
, and
Begg
,
S.
,
2001
, “
The Use of Ranking to Reduce the Required Number of Realizations
,”
Centre for Computational Geostatistics (CCG)
,
Annual Report
, p.
3
.
30.
Wang
,
Y.
, and
Kovscek
,
A.
,
2002
, “
A Streamline Approach for Ranking Reservoir Models That Incorporates Production History
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 29–Oct. 2
, Society of Petroleum Engineers.
You do not currently have access to this content.