Abstract

The purpose of this work is to investigate syngas composition (of constituents H2, CO, and CO2) and compression ratio (CR) effects on the combustion and emissions characteristics of a syngas-fueled homogenous charge compression ignition (HCCI) engine, which operates in very lean air–fuel mixture conditions for power plant usage. Investigations were conducted using ansys forte cfd package at low (3 bar indicated mean effective pressure (IMEP)) and medium (5 bar IMEP) loads, and the calculated results were compared with the Aceves et al.’s multi-zone HCCI model, using the same chemical kinetics set (Gas Research Institute (GRI)-Mech3.0). All calculations were carried out at maximum brake torque (MBT) conditions by sweeping the air–fuel mixture temperature at intake valve closing (IVC) (TIVC).This study found out that the H2 consumption rate is slightly high in a low-temperature range in the early period of combustion while the CO consumption rate is high in a high-temperature range in the later period of combustion. The results reveal that the change of H2 /CO ratio and inert gas volume fraction according to fuel composition affects combustion, but the TIVC is the dominant factor affecting combustion phasing at MBT conditions. For each fuel and load condition, the TIVC was significantly reduced with the increase of CR (17.1–22.3) to get MBT conditions, which causes to retard combustion phasing and lowers in-cylinder peak temperature. The oxides of nitrogen (NOx) emissions reduced with increasing the CR due to the lowering of the in-cylinder peak temperature.

References

References
1.
Ali
,
A. A. M. M.
,
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2019
, “
Numerical Study of the Combustion Characteristics in a Syngas-Diesel Dual-Fuel Engine Under Lean Condition
,”
Int. J. Automot. Technol.
,
20
(
5
), pp.
933
942
. 10.1007/s12239-019-0087-7
2.
Mahgoub
,
B. K. M.
,
Hassan
,
S.
, and
Sulaiman
,
S. A.
,
2015
, “
Effect of H2 and CO Content in Syngas on the Performance and Emission of Syngas-Diesel Dual Fuel Engine—A Review
,”
Appl. Mech. Mater.
,
699
, pp.
648
653
. www.scientific.net/AMM.699.648
3.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME. J. Energy Resour. Technol.
,
137
(
3
), p.
032212
. 10.1115/1.4029963
4.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME. J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
5.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME. J. Energy Resour. Technol.
,
141
(
11
), p.
112207
. 10.1115/1.4043749
6.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.
, and
Dou
,
H.
,
2016
, “
Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), p.
052201
. 10.1115/1.4032621
7.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2019
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME. J. Energy Resour. Technol.
,
142
(
4
), p.
042201
. 10.1115/1.4044763
8.
Komninos
,
N. P.
, and
Rakopoulos
,
C. D.
,
2012
, “
Modeling HCCI Combustion of Biofuels: A Review
,”
Renew. Sust. Energy Rev.
,
16
(
3
), pp.
1588
1610
. 10.1016/j.rser.2011.11.026
9.
Visakhamoorthy
,
S.
,
Tommy
,
T.
,
Dale
,
H.
,
Andrzej
,
S.
, and
Wen John
,
Z.
,
2012
, “
Numerical Study of a Homogeneous Charge Compression Ignition (HCCI) Engine Fueled With Biogas
,”
Appl. Energy
,
92
, pp.
437
446
. 10.1016/j.apenergy.2011.11.014
10.
Yamasaki
,
Y.
,
Kanno
,
M.
,
Taura
,
Y.
, and
Kaneko
,
S.
,
2009
, “
Study on Biomass Gas HCCI Engine
,”
SAE Paper No. 2009-32-0066
.
11.
Calam
,
A.
,
Solmaz
,
H.
,
Yılmaz
,
E.
, and
Içingür
,
Y.
,
2019
, “
Investigation of the Effect of Compression Ratio on Combustion and Exhaust Emissions in an HCCI Engine
,”
Energy
,
168
, pp.
1208
1216
. 10.1016/j.energy.2018.12.023
12.
Aceves
,
S. M.
,
Smith
,
J. R.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
,
1999
, “
Compression Ratio Effect on Methane HCCI Combustion
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
569
574
. 10.1115/1.2818510
13.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
,
2012
,
GRImech 3.0 Reaction Mechanism
,
Berkeley
,
Berkeley, CA
.
14.
Nazoktabar
,
M.
,
Jazayeri
,
S. A.
,
Arshtabar
,
K.
, and
Ganji
,
D. D.
,
2018
, “
Developing a Multi-Zone Model for an HCCI Engine to Obtain Optimal Conditions Using a Genetic Algorithm
,”
Energy Convers. Manag.
,
157
, pp.
49
58
. 10.1016/j.enconman.2017.12.001
15.
Bissoli
,
M.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Ranzi
,
E.
,
Mehl
,
M.
, and
Faravelli
,
T.
,
2016
, “
A new Predictive Multi-Zone Model for HCCI Engine Combustion
,”
Appl. Energy
,
178
, pp.
826
843
. 10.1016/j.apenergy.2016.06.062
16.
Kongsereeparp
,
P.
,
Kashani
,
B.
, and
Checkel
,
M. D.
,
2005
, “
A Stand-Alone Multi-Zone Model for Combustion in HCCI Engines
,”
ASME Internal Combustion Engine Division Fall Technical Conference (ICEF2005).
10.1115/ICEF2005-1241
17.
Aceves
,
S. M.
, and
Flowers
,
D. L.
,
2000
, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,”
SAE Paper No. 2000-01-0327
. 10.4271/2000-01-0327.
18.
Chang
,
J.
,
Guralp
,
O.
,
Filipi
,
Z.
, and
Assanis
,
D.
,
2004
, “
New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux
,”
SAE Paper No. 2004-01-2996
. 10.4271/2004-01-2996
19.
Broekaert
,
S.
,
De Cuyper
,
T.
,
De Paepe
,
M.
, and
Verhelst
,
S.
,
2017
, “
Evaluation of Empirical Heat Transfer Models for HCCI Combustion in a CFR Engine
,”
Appl. Energy
,
205
, pp.
1141
1150
. 10.1016/j.apenergy.2017.08.100
20.
Soyhan
,
H. S.
,
Yasar
,
H.
,
Walmsley
,
H.
,
Head
,
B.
,
Kalghatgi
,
G. T.
, and
Sorusbay
,
C.
,
2009
, “
Evaluation of Heat Transfer Correlations for HCCI Engine Modeling
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
541
549
. 10.1016/j.applthermaleng.2008.03.014
21.
Chevalier
,
C.
,
Louessard
,
P.
,
Muller
,
U. C.
, and
Arnatz
,
J.
,
1990
, “
A Detailed Low-Temperature Reaction Mechanism of n-Heptane Auto—Ignition
,”
International Symposium COMODIA
,
Tokyo, Japan
, pp.
93
97
.
22.
Iida
,
N.
, and
Igarashi
,
T.
,
2000
, “
Auto-Ignition and Combustion of n-Butane and DME/Air Mixtures in a Homogeneous Charge Compression Ignition Engine
,”
SAE Paper No. 2000-01-1832
. 10.4271/2000-01-1832
23.
Yamasaki
,
Y.
, and
Iida
,
N.
,
2003
, “
Numerical Analysis of Autoignition and Combustion of n-Butane and Air Mixture in Homogeneous-Charge Compression-Ignition Engine Using Elementary Reactions
,”
JSME Int. J. Series B
,
46
(
1
), pp.
52
59
. 10.4271/2003-01-1090
24.
Yamasaki
,
Y.
, and
Kaneko
,
S.
,
2014
, “
Prediction of Ignition and Combustion Development in an HCCI Engine Fueled by Syngas
,”
SAE Paper No. 2014-32-0002
. 10.4271/2014-32-0002
25.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A study on gasoline engine combustion by observation of intermediate reactive products during combustion
,”
SAE Paper No. 790840
. 10.4271/790840
26.
Olsson
,
J.-O.
,
Tunestål
,
P.
,
Johansson
,
B.
,
Fiveland
,
S.
,
Agama
,
J. R.
, and
Assanis
,
D. N.
,
2002
, “
“Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine,” SAE Transactions
,”
J. Eng.
,
111
(
3
), pp.
442
458
. 10.4271/2002-01-0111
27.
Christensen
,
M.
,
Hultqvist
,
A.
, and
Johansson
,
B.
,
1999
, “
Demonstrating the Multi-Fuel Capability of a Homogeneous Charge Compression Ignition Engine With Variable Compression Ratio
,”
SAE Paper No. 1999-01-3679
. 10.4271/1999-01-3679
You do not currently have access to this content.