Abstract

In this study, geothermal energy is considered as a renewable energy source to finally provide various useful outputs such as electricity, hydrogen, fresh and hot water, drying, heating, and cooling. In this regard, a new geothermal power-based multigenerational system is proposed to meet these demands in an environmentally benign manner and studied thermodynamically by considering energy and exergy approaches and investigating parametrically. A combination of geothermal energy is used to achieve the most promising hydrogen generation rates and high plant performances. The results of this study indicate that the energy and exergy efficiency values of the entire plant for the selected operating conditions become 38.41% and 42.57%. In addition to the thermodynamic analysis performed, numerous parametric studies are performed to reveal how operating conditions and state parameters affect the overall system performance. According to the parametric analyses results, for given ranges, an increase in ambient temperature, separator working temperature, geothermal fluid temperature, and geothermal fluid mass flowrate have positive impact on both energy and exergy efficiency of the integrated system and useful products generation rate as well.

References

1.
Owusu
,
P. A.
, and
Sarkodie
,
S. A.
,
2016
, “
A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation
,”
Cogent Eng.
,
3
(
1
), pp.
1
14
. 10.1080/23311916.2016.1167990
2.
Ghasemi
,
A.
,
Heidarnejad
,
P.
, and
Noorpoor
,
A.
,
2018
, “
A Novel Solar-Biomass Based Multi-Generation Energy System Including Water Desalination and Liquefaction of Natural Gas System: Thermodynamic and Thermoeconomic Optimization
,”
J. Cleaner Prod.
,
196
, pp.
424
437
. 10.1016/j.jclepro.2018.05.160
3.
Dincer
,
I.
, and
Zamfirescu
,
C.
,
2012
, “
Renewable-Energy-Based Multigeneration Systems
,”
Int. J. Energy Res.
,
36
(
15
), pp.
1403
1415
. 10.1002/er.2882
4.
Ahmadi
,
P.
,
Rosen
,
M. A.
, and
Dincer
,
I.
,
2012
, “
Multi-Objective Exergy-Based Optimization of a Polygeneration Energy System Using an Evolutionary Algorithm
,”
Energy
,
46
(
1
), pp.
21
31
. 10.1016/j.energy.2012.02.005
5.
Behnam
,
P.
,
Arefi
,
A.
, and
Shafii
,
M. B.
,
2018
, “
Exergetic and Thermoeconomic Analysis of a Trigeneration System Producing Electricity, Hot Water, and Fresh Water Driven by Low-Temperature Geothermal Sources
,”
Energy Convers. Manage.
,
157
, pp.
266
276
. 10.1016/j.enconman.2017.12.014
6.
Akrami
,
E.
,
Chitsaz
,
A.
,
Ghamari
,
P.
, and
Mahmoudi
,
S. M. S.
,
2017
, “
Energy and Exergy Evaluation of a Tri-Generation System Driven by the Geothermal Energy
,”
J. Mech. Sci. Technol.
,
31
(
1
), pp.
401
408
. 10.1007/s12206-016-1242-y
7.
Zare
,
V.
,
2016
, “
A Comparative Thermodynamic Analysis of Two Tri-Generation Systems Utilizing Low-Grade Geothermal Energy
,”
Energy Convers. Manage.
,
118
, pp.
264
274
. 10.1016/j.enconman.2016.04.011
8.
Akrami
,
E.
,
Chitsaz
,
A.
,
Nami
,
H.
, and
Mahmoudi
,
S. M. S.
,
2017
, “
Energetic and Exergoeconomic Assessment of a Multi-Generation Energy System Based on Indirect Use of Geothermal Energy
,”
Energy
,
124
, pp.
625
639
. 10.1016/j.energy.2017.02.006
9.
Ezzat
,
M. F.
, and
Dincer
,
I.
,
2016
, “
Energy and Exergy Analyses of a New Geothermal–Solar Energy Based System
,”
Sol. Energy
,
134
, pp.
95
106
. 10.1016/j.solener.2016.04.029
10.
Behzadi
,
A.
,
Gholamian
,
E.
,
Ahmadi
,
P.
,
Habibollahzade
,
A.
, and
Ashjaee
,
M.
,
2018
, “
Energy, Exergy and Exergoeconomic (3E) Analyses and Multi-Objective Optimization of a Solar and Geothermal Based Integrated Energy System
,”
Appl. Therm. Eng.
,
143
, pp.
1011
1022
. 10.1016/j.applthermaleng.2018.08.034
11.
Emadi
,
M. A.
, and
Mahmoudimehr
,
J.
,
2019
, “
Modeling and Thermo-Economic Optimization of a New Multi-Generation System With Geothermal Heat Source and LNG Heat Sink
,”
Energy Convers. Manage.
,
189
, pp.
153
166
. 10.1016/j.enconman.2019.03.086
12.
Islam
,
S.
, and
Dincer
,
I.
,
2017
, “
Development, Analysis and Performance Assessment of a Combined Solar and Geothermal Energy-Based Integrated System for Multigeneration
,”
Sol. Energy
,
147
, pp.
328
343
. 10.1016/j.solener.2017.02.048
13.
Al-Ali
,
M.
, and
Dincer
,
I.
,
2014
, “
Energetic and Exergetic Studies of a Multigenerational Solar–Geothermal System
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
16
23
. 10.1016/j.applthermaleng.2014.06.033
14.
Balat
,
M.
,
2008
, “
Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems
,”
Int. J. Hydrogen Energy
,
33
(
15
), pp.
4013
4029
. 10.1016/j.ijhydene.2008.05.047
15.
Edwards
,
P. P.
,
Kuznetsov
,
V. L.
, and
David
,
W. I. F.
,
2007
, “
Hydrogen Energy
,”
Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci.
365
(
1853
), pp.
1043
1056
. 10.1098/rsta.2006.1965
16.
Winter
,
C. J.
, and
Nitsch
,
J.
,
2012
,
Hydrogen as an Energy Carrier: Technologies, Systems, Economy
,
Springer Science & Business Media
,
Berlin, Germany
.
17.
Mazloomi
,
K.
, and
Gomes
,
C.
,
2012
, “
Hydrogen as an Energy Carrier: Prospects and Challenges
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3024
3033
. 10.1016/j.rser.2012.02.028
18.
Balta
,
M. T.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2009
, “
Thermodynamic Assessment of Geothermal Energy Use in Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
7
), pp.
2925
2939
. 10.1016/j.ijhydene.2009.01.087
19.
Balta
,
M. T.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2010
, “
Potential Methods for Geothermal-Based Hydrogen Production
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4949
4961
. 10.1016/j.ijhydene.2009.09.040
20.
Yuksel
,
Y. E.
,
Ozturk
,
M.
, and
Dincer
,
I.
,
2018
, “
Thermodynamic Analysis and Assessment of a Novel Integrated Geothermal Energy-Based System for Hydrogen Production and Storage
,”
Int. J. Hydrogen Energy
,
43
(
9
), pp.
4233
4243
. 10.1016/j.ijhydene.2017.08.137
21.
Yuksel
,
Y. E.
, and
Ozturk
,
M.
,
2017
, “
Thermodynamic and Thermoeconomic Analyses of a Geothermal Energy Based Integrated System for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
42
(
4
), pp.
2530
2546
. 10.1016/j.ijhydene.2016.04.172
22.
Ebadollahi
,
M.
,
Rostamzadeh
,
H.
,
Pedram
,
M. Z.
,
Ghaebi
,
H.
, and
Amidpour
,
M.
,
2019
, “
Proposal and Assessment of a New Geothermal-Based Multigeneration System for Cooling, Heating, Power, and Hydrogen Production, Using LNG Cold Energy Recovery
,”
Renewable Energy
,
135
, pp.
66
87
. 10.1016/j.renene.2018.11.108
23.
Cao
,
L.
,
Lou
,
J.
,
Wang
,
J.
, and
Dai
,
Y.
,
2018
, “
Exergy Analysis and Optimization of a Combined Cooling and Power System Driven by Geothermal Energy for Ice-Making and Hydrogen Production
,”
Energy Convers. Manage.
,
174
, pp.
886
896
. 10.1016/j.enconman.2018.08.067
24.
Bracha
,
M.
,
Lorenz
,
G.
,
Patzelt
,
A.
, and
Wanner
,
M.
,
1994
, “
Large-Scale Hydrogen Liquefaction in Germany
,”
Int. J. Hydrogen Energy
,
19
(
1
), pp.
53
59
. 10.1016/0360-3199(94)90177-5
25.
Sadaghiani
,
M. S.
, and
Mehrpooya
,
M.
,
2017
, “
Introducing and Energy Analysis of a Novel Cryogenic Hydrogen Liquefaction Process Configuration
,”
Int. J. Hydrogen Energy
,
42
(
9
), pp.
6033
6050
. 10.1016/j.ijhydene.2017.01.136
26.
Ansarinasab
,
H.
,
Mehrpooya
,
M.
, and
Mohammadi
,
A.
,
2017
, “
Advanced Exergy and Exergoeconomic Analyses of a Hydrogen Liquefaction Plant Equipped With Mixed Refrigerant System
,”
J. Cleaner Prod.
,
144
, pp.
248
259
. 10.1016/j.jclepro.2017.01.014
27.
Seyam
,
S.
,
Dincer
,
I.
, and
Chaab
,
M. A.
,
2020
, “
Analysis of a Clean Hydrogen Liquefaction Plant Integrated With a Geothermal System
,”
J. Cleaner Prod.
,
243
, pp.
1
16
. 10.1016/j.jclepro.2019.118562
28.
Ratlamwala
,
T. A. H.
,
Dincer
,
I.
, and
Gadalla
,
M. A.
,
2012
, “
Performance Analysis of a Novel Integrated Geothermal-Based System for Multi-Generation Applications
,”
Appl. Therm. Eng.
,
40
, pp.
71
79
. 10.1016/j.applthermaleng.2012.01.056
29.
Fallah
,
M.
,
Mahmoudi
,
S. M.
,
Yari
,
M.
, and
Ghiasi
,
R. A.
,
2016
, “
Advanced Exergy Analysis of the Kalina Cycle Applied for Low Temperature Enhanced Geothermal System
,”
Energy Convers. Manage.
,
108
, pp.
190
201
. 10.1016/j.enconman.2015.11.017
30.
Zhu
,
Y.
, and
Jiang
,
P.
,
2012
, “
Hybrid Vapor Compression Refrigeration System With an Integrated Ejector Cooling Cycle
,”
Int. J. Refrig.
,
35
(
1
), pp.
68
78
. 10.1016/j.ijrefrig.2011.09.003
31.
Fu
,
W.
,
Zhu
,
J.
,
Zhang
,
W.
, and
Lu
,
Z.
,
2013
, “
Performance Evaluation of Kalina Cycle Subsystem on Geothermal Power Generation in the Oilfield
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
497
506
. 10.1016/j.applthermaleng.2013.01.044
32.
Huang
,
B. J.
,
Petrenko
,
V. A.
,
Chang
,
J. M.
,
Lin
,
C. P.
, and
Hu
,
S. S.
,
2001
, “
A Combined-Cycle Refrigeration System Using Ejector-Cooling Cycle as the Bottom Cycle
,”
Int. J. Refrig.
,
24
(
5
), pp.
391
399
. 10.1016/S0140-7007(00)00040-2
33.
Klein
,
S. A.
, and
Alvarado
,
F. L.
,
2002
,
Engineering Equation Solver
,
F-Chart Software
,
Madison, WI
.
You do not currently have access to this content.