Abstract

Molten carbonate fuel cells (MCFCs) offer several advantages that are attracting an increasingly intense research and development effort. Recent advances include improved materials and fabrication techniques as well as new designs, flow configurations, and applications. Several factors are holding back large-scale implementation of fuel cells, though, especially in distributed energy generation, a major one being their long response time to changing parameters. Alternative mathematical models of the molten carbonate fuel cell stack have been developed over the last decade. This study investigates a generic molten carbonate fuel cell stack with a nominal power output of 1 kWel. As daily, weekly, and monthly variations in the electrical power load are expected, there is a need to develop numerical tools to predict the unit’s performance with high accuracy. Hence, a fully physical dynamic model of an MCFC stack was developed and implemented in aspen hysys 10 modeling software to enable a predictive analysis of the dynamic response. The presented model exhibits high accuracy and accounts for thermal and electrochemical processes and parameters. The authors present a numerical analysis of an MCFC stack in emergency scenarios. Further functionality of the model, which was validated using real operational data, is discussed.

References

References
1.
Ma
,
Z.
,
Eichman
,
J.
, and
Kurtz
,
J.
,
2019
, “
Fuel Cell Backup Power System for Grid Service and Microgrid in Telecommunication Applications
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062002
. 10.1115/1.4042402
2.
Wang
,
Y.
,
Li
,
J.
,
Tao
,
Q.
,
Bargal
,
M. H.
,
Yu
,
M.
,
Yuan
,
X.
, and
Su
,
C.
,
2020
, “
Thermal Management System Modeling and Simulation of a Full-Powered Fuel Cell Vehicle
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061304
.
3.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Qandil
,
H. D.
,
Al-Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
A Stand-Alone Hybrid Photovoltaic, Fuel Cell, and Battery System: Case Studies in Jordan
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111201
. 10.1115/1.4043656
4.
Szabłowski
,
Ł
,
Milewski
,
J.
,
Badyda
,
K.
, and
Kupecki
,
J.
,
2018
, “
Ann–Supported Control Strategy for a Solid Oxide Fuel Cell Working on Demand for a Public Utility Building
,”
Int. J. Hydrogen Energy
,
43
(
6
), pp.
3555
3565
. 10.1016/j.ijhydene.2017.10.171
5.
Fragiacomo
,
P.
,
De Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
. 10.1115/1.4039872
6.
Yang
,
X.
,
Zhao
,
H.
, and
Hou
,
Q.
,
2019
, “
Thermodynamic Performance Study of the SOFC–GT–RC System Fueled by LNG With CO2 Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122005
. 10.1115/1.4044943
7.
Kupecki
,
J.
,
Motylinski
,
K.
,
Szablowski
,
L.
,
Zurawska
,
A.
,
Naumovich
,
Y.
,
Szczesniak
,
A.
, and
Milewski
,
J.
,
2019
, “
Quantification of the Improvement of Performance of Solid Oxide Fuel Cell Using Chiller-Based Fuel Recirculation
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022002
. 10.1115/1.4044572
8.
Bischoff
,
M.
, and
Huppmann
,
G.
,
2002
, “
Operating Experience with a 250 kw el Molten Carbonate Fuel Cell (MCFC) Power Plant
,”
J. Power Sources
,
105
(
2
), pp.
216
221
. 10.1016/S0378-7753(01)00942-9
9.
Bosio
,
B.
,
Costamagna
,
P.
,
Parodi
,
F.
, and
Passalacqua
,
B.
,
1998
, “
Industrial Experience on the Development of the Molten Carbonate Fuel Cell Technology
,”
J. Power Sources
,
74
(
2
), pp.
175
187
. 10.1016/S0378-7753(98)00052-4
10.
Kim
,
B.
,
Kim
,
D. H.
,
Lee
,
J.
,
Kang
,
S. W.
, and
Lim
,
H. C.
,
2012
, “
The Operation Results of a 125 kw Molten Carbonate Fuel Cell System
,”
Renewable Energy
,
42
, pp.
145
151
. 10.1016/j.renene.2011.08.044
11.
Eichenberger
,
P. H.
,
1998
, “
The 2 mw Santa Clara Project
,”
J. Power Sources
,
71
(
1
), pp.
95
99
. 10.1016/S0378-7753(97)02716-X
12.
Marra
,
D.
, and
Bosio
,
B.
,
2007
, “
Process Analysis of 1 mw MCFC Plant
,”
Int. J. Hydrogen Energy
,
32
(
7
), pp.
809
818
. 10.1016/j.ijhydene.2006.11.016
13.
Figueroa
,
R.
, and
Otahal
,
J.
,
1998
, “
Utility Experience with a 250-kw Molten Carbonate Fuel Cell Cogeneration Power Plant at Nas Miramar, San Diego
,”
J. Power Sources
,
71
(
1-2
), pp.
100
104
. 10.1016/S0378-7753(97)02788-2
14.
Ishikawa
,
T.
, and
Yasue
,
H.
,
2000
, “
Start-up, Testing and Operation of 1000 kw Class MCFC Power Plant
,”
J. Power Sources
,
86
(
1
), pp.
145
150
. 10.1016/S0378-7753(99)00446-2
15.
Rashidi
,
R.
,
Berg
,
P.
, and
Dincer
,
I.
,
2009
, “
Performance Investigation of a Combined MCFC System
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4395
4405
. 10.1016/j.ijhydene.2009.03.038
16.
Arato
,
E.
,
Bosio
,
B.
,
Costa
,
P.
, and
Parodi
,
F.
,
2001
, “
Preliminary Experimental and Theoretical Analysis of Limit Performance of Molten Carbonate Fuel Cells
,”
J. Power Sources
,
102
(
1–2
), pp.
74
81
. 10.1016/S0378-7753(01)00797-2
17.
Dicks
,
A.
, and
Siddle
,
A.
,
2000
, “
Assessment of Commercial Prospects of Molten Carbonate Fuel Cells
,”
J. Power Sources
,
86
(
1
), pp.
316
323
. 10.1016/S0378-7753(99)00449-8
18.
Bischoff
,
M.
,
2006
, “
Large Stationary Fuel Cell Systems: Status and Dynamic Requirements
,”
J. Power Sources
,
154
(
2
), pp.
461
466
. 10.1016/j.jpowsour.2005.10.027
19.
Sugiura
,
K.
, and
Naruse
,
I.
,
2002
, “
Feasibility Study of the co-Generation System with Direct Internal Reforming-Molten Carbonate Fuel Cell (dir-MCFC) for Residential use
,”
J. Power Sources
,
106
(
1–2
), pp.
51
59
. 10.1016/S0378-7753(01)01022-9
20.
Pepermans
,
G.
,
Driesen
,
J.
,
Haeseldonckx
,
D.
,
Belmans
,
R.
, and
Dhaeseleer
,
W.
,
2005
, “
Distributed Generation: Definition, Benefits and Issues
,”
Energy policy
,
33
(
6
), pp.
787
798
. 10.1016/j.enpol.2003.10.004
21.
Mehmeti
,
A.
,
Santoni
,
F.
,
Della Pietra
,
M.
, and
McPhail
,
S. J.
,
2016
, “
Life Cycle Assessment of Molten Carbonate Fuel Cells: State of the art and Strategies for the Future
,”
J. Power Sources
,
308
, pp.
97
108
. 10.1016/j.jpowsour.2015.12.023
22.
Sasaki
,
A.
,
Matsumoto
,
S.
,
Tanaka
,
T.
, and
Ohtsuki
,
J.
,
1988
, “
Dynamic Characteristics of a Molten Carbonate Fuel Cell Stack
,”
Proceedings of the 27th IEEE Conference on
,
Austin, TX
, IEEE, pp.
1044
1049
.
23.
He
,
W.
,
1998
, “
Dynamic Model for Molten Carbonate Fuel-Cell Power-Generation Systems
,”
Energy Convers. Manage.
,
39
(
8
), pp.
775
783
. 10.1016/S0196-8904(97)10022-X
24.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
,
1999
, “
Development of a Stack Simulation Model for Control Study on Direct Reforming Molten Carbonate Fuel Cell Power Plant
,”
IEEE Transactions on Energy Conversion
,
14
(
4
), pp.
1651
1657
. 10.1109/60.815119
25.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
,
2001
, “
An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack
,”
IEEE Transactions on Energy Conversion
,
16
(
3
), pp.
289
295
. 10.1109/60.937210
26.
Bittanti
,
S.
,
Canevese
,
S.
,
De Marco
,
A.
,
Moretti
,
G.
, and
Prandoni
,
V.
,
2005
, “
Molten Carbonate Fuel Cell Modelling
,”
IFAC Proceedings Volumes
,
38
(
1
), pp.
392
399
. 10.3182/20050703-6-CZ-1902.01794
27.
Liu
,
A.
, and
Weng
,
Y.
,
2010
, “
Modeling of Molten Carbonate Fuel Cell Based on the Volume–Resistance Characteristics and Experimental Analysis
,”
J. Power Sources
,
195
(
7
), pp.
1872
1879
. 10.1016/j.jpowsour.2009.10.040
28.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
,
2006
, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power Sources
,
158
(
1
), pp.
213
224
. 10.1016/j.jpowsour.2005.07.093
29.
Kang
,
B. S.
,
Koh
,
J.-H.
, and
Lim
,
H. C.
,
2001
, “
Experimental Study on the Dynamic Characteristics of kw-Scale Molten Carbonate Fuel Cell Systems
,”
J. Power Sources
,
94
(
1
), pp.
51
62
. 10.1016/S0378-7753(00)00606-6
30.
Heidebrecht
,
P.
, and
Sundmacher
,
K.
,
2002
, “
Dynamic Modeling and Simulation of a Countercurrent Molten Carbonate Fuel Cell (MCFC) With Internal Reforming
,”
Fuel Cells
,
2
(
3–4
), pp.
166
180
. 10.1002/fuce.200290016
31.
Law
,
M.
,
Lee
,
V.-C.
, and
Tay
,
C.
,
2015
, “
Dynamic Behaviors of a Molten Carbonate Fuel Cell Under a Sudden Shut-Down Scenario: The Effects on Temperature Gradients
,”
Appl. Therm. Eng.
,
82
, pp.
98
109
. 10.1016/j.applthermaleng.2014.11.083
32.
Yu
,
L.-j.
,
Ren
,
G.-p.
, and
Jiang
,
X.-m.
,
2008
, “
Experimental and Analytical Investigation of Molten Carbonate Fuel Cell Stack
,”
Energy Convers. Manage.
,
49
(
4
), pp.
873
879
. 10.1016/j.enconman.2007.06.029
33.
Ovrum
,
E.
, and
Dimopoulos
,
G.
,
2012
, “
A Validated Dynamic Model of the First Marine Molten Carbonate Fuel Cell
,”
Appl. Therm. Eng.
,
35
, pp.
15
28
. 10.1016/j.applthermaleng.2011.09.023
34.
Ramandi
,
M.
,
Berg
,
P.
, and
Dincer
,
I.
,
2013
, “
Numerical Analysis of Transient Processes in Molten Carbonate Fuel Cells via Impedance Perturbations
,”
J. Power Sources
,
231
, pp.
134
145
. 10.1016/j.jpowsour.2012.12.104
35.
Kim
,
T. Y.
,
Kim
,
B. S.
,
Park
,
T. C.
, and
Yeo
,
Y. K.
,
2017
, “
A Comparative Study of Models for Molten Carbonate Fuel Cell (MCFC) Processes
,”
Korean J. Chem. Eng.
,
34
(
7
), pp.
1952
1960
. 10.1007/s11814-017-0117-y
36.
Wejrzanowski
,
T.
,
Ibrahim
,
S. H.
,
Skibinski
,
J.
,
Cwieka
,
K.
, and
Kurzydlowski
,
K. J.
,
2017
, “
Appropriate Models for Simulating Open-Porous Materials
,”
Image Analysis Stereology
,
36
(
2
), pp.
105
110
. 10.5566/ias.1649
37.
Ćwieka
,
K.
,
Ibrahim
,
S. H.
,
Milewski
,
J.
, and
Wejrzanowski
,
T.
,
2018
, “
Effect of Anode Porosity on the Performance of Molten Carbonate Fuel Cell
,”
J. Power Technol.
,
98
(
2
), pp.
228
237
.
38.
Ibrahim
,
S. H.
,
Skibinski
,
J.
,
Oliver
,
G.
, and
Wejrzanowski
,
T.
,
2019
, “
Microstructure Effect on the Permeability of the Tape-Cast Open-Porous Materials
,”
Mater. Des.
,
167
, p.
107639
. 10.1016/j.matdes.2019.107639
39.
Yang
,
F.
,
Zhu
,
X.-J.
, and
Cao
,
G.-Y.
,
2007
, “
Nonlinear Fuzzy Modeling of a MCFC Stack by an Identification Method
,”
J. Power Sources
,
166
(
2
), pp.
354
361
. 10.1016/j.jpowsour.2007.01.062
40.
Shen
,
C.
,
Cao
,
G.-Y.
,
Zhu
,
X.-J.
, and
Sun
,
X.-J.
,
2002
, “
Nonlinear Modeling and Adaptive Fuzzy Control of Mcfc Stack
,”
J. Process Control
,
12
(
8
), pp.
831
839
. 10.1016/S0959-1524(02)00013-6
41.
Tanimoto
,
K.
,
Yanagida
,
M.
,
Kojima
,
T.
,
Tamiya
,
Y.
,
Matsumoto
,
H.
, and
Miyazaki
,
Y.
,
1998
, “
Long-Term Operation of Small-Sized Single Molten Carbonate Fuel Cells
,”
J. Power Sources
,
72
(
1
), pp.
77
82
. 10.1016/S0378-7753(97)02673-6
42.
Soler
,
J.
,
Gonzalez
,
T.
,
Escudero
,
M.
,
Rodrigo
,
T.
, and
Daza
,
L.
,
2002
, “
Endurance Test on a Single Cell of a Novel Cathode Material for Mcfc
,”
J. Power Sources
,
106
(
1
), pp.
189
195
. 10.1016/S0378-7753(01)01041-2
43.
Bozzini
,
B.
,
Maci
,
S.
,
Sgura
,
I.
,
Presti
,
R. L.
, and
Simonetti
,
E.
,
2011
, “
Numerical Modelling of MCFC Cathode Degradation in Terms of Morphological Variations
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10403
10413
. 10.1016/j.ijhydene.2010.07.110
44.
Milewski
,
J.
,
Wołowicz
,
M.
,
Miller
,
A.
, and
Bernat
,
R.
,
2013
, “
A Reduced Order Model of Molten Carbonate Fuel Cell: A Proposal
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11565
11575
. 10.1016/j.ijhydene.2013.06.002
45.
Hyprotech
,
1996
, HYSYS.Plant 2.1 User guide.
46.
Szczesniak
,
A.
,
Milewski
,
J.
,
Szablowski
,
L.
,
Bujalski
,
W.
,
Dybinski
,
O.
, and
Wejrzanowski
,
T.
,
2020
, “
Dynamic Model of a Molten Carbonate Fuel Cell 1 kw Stack
,”
Energy
,
200
(
117442
), pp.
1
18
.
47.
Huijsmans
,
J.
,
Kraaij
,
G.
,
Makkus
,
R.
,
Rietveld
,
G.
,
Sitters
,
E.
, and
Reijers
,
H. T. J.
,
2000
, “
An Analysis of Endurance Issues for MCFC
,”
J. Power Sources
,
86
(
1
), pp.
117
121
. 10.1016/S0378-7753(99)00448-6
48.
Koh
,
J.-H.
,
Seo
,
H.-K.
,
Yoo
,
Y.-S.
, and
Lim
,
H. C.
,
2002
, “
Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack
,”
Chem. Eng. J.
,
87
(
3
), pp.
367
379
. 10.1016/S1385-8947(01)00234-0
49.
Della Pietra
,
M.
,
McPhail
,
S.
,
Prabhakar
,
S.
,
Desideri
,
U.
,
Nam
,
S.
, and
Cigolotti
,
V.
,
2016
, “
Accelerated Test for MCFC Button Cells: First Findings
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18807
18814
. 10.1016/j.ijhydene.2016.07.021
50.
McPhail
,
S. J.
,
Leto
,
L.
,
Della Pietra
,
M.
,
Cigolotti
,
V.
, and
Moreno
,
A.
,
2015
,
International Status of Molten Carbonate Fuel Cells Technology
,
Dossier, ENEA
,
Rome
.
You do not currently have access to this content.