Abstract

The importance of evaluating wellbore stability in analyzing and estimating the efficiency of drilling directionally into oil and gas reservoirs is well known. Geomechanical data and failure criterion can be used to model and control rock mass behavior in response to the stresses imposed upon it. Understanding and managing the risks of rock mass deformation significantly improve operational processes such as wellbore stability, sand production, and hydraulic fracturing. The modified Lade failure criterion is established as the most precise failure criterion based on previous studies. By combining it with tensions around the wellbore, a novel relationship is derived for determining the stable mud window. To investigate the accuracy of the new relationship, two geomechanical models (neural network and empirical correlations) for a one-directional wellbore are developed and their performance compared with two other failure criteria (Hoek–Brown and Mogi–Coulomb). The geomechanical parameters (Young’s modulus, Poisson ratio, uniaxial compressive strength, and internal friction coefficient) obtained from the models show that neural network configurations perform better than those built with the empirical equation. The horizontal minimum and maximum stress values across the depth interval of interest (2347–2500 m) are established for a case study reservoir. The model provides an accurate prediction of wellbore instability when applying the modified Lade criterion; the stable mud weight is derived with improved precision compared to the other failure criteria evaluated. A key advantage of the developed method is that it does not require input knowledge of the reservoir’s structural boundaries (e.g., the fault regime) or core test data.

References

1.
Gao
,
C.
, and
Gray
,
K.
,
2019
, “
A Workflow for Infill Well Design: Wellbore Stability Analysis Through a Coupled Geomechanics and Reservoir Simulator
,”
J. Pet. Sci. Eng.
,
176
, pp.
279
290
. 10.1016/j.petrol.2018.12.077
2.
Ma
,
T.
,
Tang
,
T.
,
Chen
,
P.
, and
Yang
,
C.
,
2019
, “
Uncertainty Evaluation of Safe Mud Weight Window Utilizing the Reliability Assessment Method
,”
Energies
,
12
(
5
), p.
942
. 10.3390/en12050942
3.
Wang
,
Y.
,
Liu
,
Z.
,
Yang
,
H.
, and
Zhuang
,
Z.
,
2017
, “
Finite Element Analysis for Wellbore Stability of Transversely Isotropic Rock With Hydraulic-Mechanical-Damage Coupling
,”
Sci. China Technol. Sci.
,
60
(
1
), pp.
133
145
. 10.1007/s11431-016-0007-3
4.
Chan
,
A. W.
,
Yadav
,
S.
, and
Mikulencak
,
D. R.
,
2019
, “
From Wellbore Instability and Grain Mixing to Injectivity Reduction
,”
Rock Mech. Rock Eng.
,
52
(
12
), pp.
5195
5204
. 10.1007/s00603-019-01886-6
5.
Zhang
,
H.
,
Yin
,
S.
, and
Aadnoy
,
B. S.
,
2019
, “
Numerical Investigation of the Impacts of Borehole Breakouts on Breakdown Pressure
,”
Energies
,
12
(
5
), p.
888
. 10.3390/en12050888
6.
He
,
W.
,
Hayatdavoudi
,
A.
,
Chen
,
K.
,
Sawant
,
K.
,
Zhang
,
Q.
, and
Zhang
,
C.
,
2019
, “
Enhancement of Plastering Effect on Strengthening Wellbore by Optimizing Particle Size Distribution of Wellbore Strengthening Materials
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122905
. 10.1115/1.4043785
7.
Wang
,
Y.
,
Zhuang
,
Z.
,
Liu
,
Z.
,
Yang
,
H.
, and
Li
,
C.
,
2017
, “
Finite Element Analysis for Inclined Wellbore Stability of Transversely Iso-Tropic Rock With HMCD Coupling Based on Weak Plane Strength Criterion
,”
Sci. China Technol Sci.
,
60
(
4
), pp.
624
637
. 10.1007/s11431-016-0460-2
8.
Zhang
,
L.
,
Bian
,
Y.
,
Zhang
,
S.
, and
Yan
,
Y.
,
2019
, “
A New Analytical Model to Evaluate Uncertainty of Wellbore Collapse Pressure Based on Advantageous Synergies of Different Strength Criteria
,”
Rock Mech. Rock Eng
,
52
(
8
), pp.
2649
2664
. 10.1007/s00603-018-1729-1
9.
Gandomkar
,
A.
, and
Gray
,
K.
,
2019
, “
Transient Thermoporoelastic Model Under Local Thermal Non-Equilibrium
,”
Geomech. Energy Environ.
,
20
, p.
100135
. 10.1016/j.gete.2019.100135
10.
Ni
,
X.
,
Liu
,
Z.
, and
Wei
,
J.
,
2019
, “
Quantitative Evaluation of the Impacts of Drilling Mud on the Damage Degree to the Permeability of Fractures at Different Scales in Coal Reservoirs
,”
Fuel
,
236
, pp.
382
393
. 10.1016/j.fuel.2018.08.130
11.
McLellan
,
P.
,
1996
, “
Assessing the Risk of Wellbore Instability in Horizontal and Inclined Wells
,”
J. Can. Pet. Technol.
,
35
(
5
), pp.
1
10
. 10.2118/96-05-02
12.
Jamshidi
,
E.
, and
Amani
,
M.
,
2014
, “
Numerical Wellbore Stability Analysis Using Discrete Element Models
,”
Pet. Sci. Technol.
,
32
(
8
), pp.
974
982
. 10.1080/10916466.2011.631070
13.
Wang
,
X.
, and
Sterling
,
R. L.
,
2007
, “
Stability Analysis of a Borehole Wall During Horizontal Directional Drilling
,”
Tunnelling Underground Space Technol.
,
22
(
5–6
), pp.
620
632
. 10.1016/j.tust.2007.01.002
14.
Salehi
,
S.
,
Hareland
,
G.
, and
Nygaard
,
R.
,
2010
, “
Numerical Simulations of Wellbore Stability in Under-Balanced-Drilling Wells
,”
J. Pet. Sci. Eng.
,
72
(
3–4
), pp.
229
235
. 10.1016/j.petrol.2010.03.022
15.
Gomar
,
M.
,
Goodarznia
,
I.
, and
Shadizadeh
,
S. R.
,
2015
, “
A Transient Fully Coupled Thermo-Poroelastic Finite Element Analysis of Wellbore Stability
,”
Arabian J. Geosci.
,
8
(
6
), pp.
3855
3865
. 10.1007/s12517-014-1461-4
16.
Zhou
,
X.
, and
Ghassemi
,
A.
,
2009
, “
Finite Element Analysis of Coupled Chemo-Poro-Thermo-Mechanical Effects Around a Wellbore in Swelling Shale
,”
Int. J. Rock Mech. Mining Sci.
,
46
(
4
), pp.
769
778
. 10.1016/j.ijrmms.2008.11.009
17.
Yousefian
,
H.
,
Soltanian
,
H.
,
Marji
,
M. F.
,
Abdollahipour
,
A.
, and
Pourmazaheri
,
Y.
,
2018
, “
Numerical Simulation of a Wellbore Stability in an Iranian Oilfield Utilizing Core Data
,”
J. Pet. Sci. Eng.
,
168
, pp.
577
592
. 10.1016/j.petrol.2018.04.051
18.
Gao
,
J.
,
Deng
,
J.
,
Lan
,
K.
,
Feng
,
Y.
,
Zhang
,
W.
, and
Wang
,
H.
,
2017
, “
Porothermoelastic Effect on Wellbore Stability in Transversely Isotropic Medium Subjected to Local Thermal Non-Equilibrium
,”
Int. J. Rock Mech. Mining Sci.
,
96
, pp.
66
84
. 10.1016/j.ijrmms.2016.12.007
19.
Xie
,
X.
,
Fjær
,
E.
, and
Detournay
,
E.
,
2019
, “
Time-Dependent Closure of a Borehole in a Viscoplastic Rock
,”
Geomech. Energy Environ.
,
19
, p.
100115
. 10.1016/j.gete.2019.02.001
20.
Aslannejad
,
M.
,
Khaksar Manshad
,
A.
, and
Jalalifar
,
H.
,
2013
, “
Analysis of Vertical, Horizontal and Deviated Wellbores Stability
,”
Am. J. Oil Chem. Tech.
,
1
(
8
), pp.
2326
6570
. 10.14266/ajoct18-1
21.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2005
, “
Relation Between the Mogi and the Coulomb Failure Criteria
,”
Int. J. Rock Mech. Mining Sci.
,
42
(
3
), pp.
431
439
. 10.1016/j.ijrmms.2004.11.004
22.
Hoek
,
E.
, and
Brown
,
E. T.
,
1980
, “
Empirical Strength Criterion for Rock Masses
,”
J. Geotech. Geoenviron. Eng.
,
106
(
ASCE 15715
), pp.
1013
1035
.
23.
Zhang
,
L.
, and
Zhu
,
H.
,
2007
, “
Three-Dimensional Hoek-Brown Strength Criterion for Rocks
,”
J. Geotech. Geoenviron. Eng.
,
133
(
9
), pp.
1128
1135
. 10.1061/(ASCE)1090-0241(2007)133:9(1128)
24.
Zhang
,
L.
,
Cao
,
P.
, and
Radha
,
K.
,
2010
, “
Evaluation of Rock Strength Criteria for Wellbore Stability Analysis
,”
Int. J. Rock Mech. Mining Sci.
,
47
(
8
), pp.
1304
1316
. 10.1016/j.ijrmms.2010.09.001
25.
Benz
,
T.
, and
Schwab
,
R.
,
2008
, “
A Quantitative Comparison of Six Rock Failure Criteria
,”
Int. J. Rock Mech. Mining Sci.
,
7
(
45
), pp.
1176
1186
. 10.1016/j.ijrmms.2008.01.007
26.
Liolios
,
P.
, and
Exadaktylos
,
G.
,
2013
, “
Comparison of a Hyperbolic Failure Criterion With Established Failure Criteria for Cohesive-Frictional Materials
,”
Int. J. Rock Mech. Mining Sci.
,
63
, pp.
12
26
. 10.1016/j.ijrmms.2013.06.005
27.
Bahrami
,
B.
,
Mohsenpour
,
S.
,
Miri
,
M. A.
, and
Mirhaseli
,
R.
,
2017
, “
Quantitative Comparison of Fifteen Rock Failure Criteria Constrained by Polyaxial Test Data
,”
J. Pet. Sci. Eng.
,
159
, pp.
564
580
. 10.1016/j.petrol.2017.09.065
28.
Holt
,
R. M.
,
Fjær
,
E.
,
Stenebråten
,
J. F.
, and
Nes
,
O.-M.
,
2015
, “
Brittleness of Shales: Relevance to Borehole Collapse and Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
131
, pp.
200
209
. 10.1016/j.petrol.2015.04.006
29.
Karatela
,
E.
,
Taheri
,
A.
,
Xu
,
C.
, and
Stevenson
,
G.
,
2016
, “
Study on Effect of In-Situ Stress Ratio and Discontinuities Orientation on Borehole Stability in Heavily Fractured Rocks Using Discrete Element Method
,”
J. Pet. Sci. Eng.
,
139
, pp.
94
103
. 10.1016/j.petrol.2015.12.016
30.
Meng
,
M.
,
Zamanipour
,
Z.
,
Miska
,
S.
,
Yu
,
M.
, and
Ozbayoglu
,
E. M.
,
2019
, “
Dynamic Wellbore Stability Analysis Under Tripping Operations
,”
Rock Mech. Rock Eng.
,
52
(
9
), pp.
3063
3083
. 10.1007/s00603-019-01745-4
31.
Meng
,
M.
,
Chen
,
P.
, and
Ren
,
R.
,
2019
, “
Statistic Evaluation of Failure Criteria in Wellbore Stability With Temperature Effects
,”
Fuel
,
252
, pp.
730
752
. 10.1016/j.fuel.2019.04.110
32.
Westergaard
,
H. M.
,
1940
, “
Plastic State of Stress Around a Deep Well
,”
J. Boston Soc. Civil Engr.
,
27
(
1
), p.
1.
33.
Risnes
,
R.
,
Bratli
,
R. K.
, and
Horsrud
,
P.
,
1982
, “
Sand Stresses Around a Wellbore
,”
Soc. Pet. Eng. J.
,
22
(
06
), pp.
883
898
. 10.2118/9650-PA
34.
Crook
,
A. J.
,
Yu
,
J.-G.
, and
Willson
,
S. M.
,
2002
, “
Development of an Orthotropic 3D Elastoplastic Material Model for Shale
,”
SPE/ISRM Rock Mechanics Conference
,
Society of Petroleum Engineers
.
35.
Fjar
,
E.
,
Holt
,
R.M.
,
Raaen
,
A.M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
, Vol.
53
,
Elsevier
,
New York
.
36.
Kaarstad
,
E.
, and
Aadnoy
,
B. S.
,
2005
, “
Optimization of Borehole Stability Using 3-D Stress Optimization
,”
SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
.
37.
Mogi
,
K.
,
1971
, “
Fracture and Flow of Rocks Under High Triaxial Compression
,”
J. Geophys. Res.
,
76
(
5
), pp.
1255
1269
. 10.1029/JB076i005p01255
38.
Hoek
,
E.
, and
Brown
,
E. T.
,
1997
, “
Practical Estimates of Rock Mass Strength
,”
Int. J. Rock Mech. Mining Sci.
,
34
(
8
), pp.
1165
1186
. 10.1016/S1365-1609(97)80069-X
39.
Ewy
,
R.
,
1999
, “
Wellbore-Stability Predictions by Use of a Modified Lade Criterion
,”
SPE Drill. Completion
,
14
(
02
), pp.
85
91
. 10.2118/56862-PA
40.
Jamshidi
,
A.
,
Zamanian
,
H.
, and
Sahamieh
,
R. Z.
,
2018
, “
The Effect of Density and Porosity on the Correlation Between Uniaxial Compressive Strength and P-Wave Velocity
,”
Rock Mech. Rock Eng.
,
51
(
4
), pp.
1279
1286
. 10.1007/s00603-017-1379-8
41.
Najibi
,
A. R.
,
Ghafoori
,
M.
,
Lashkaripour
,
G. R.
, and
Asef
,
M. R.
,
2015
, “
Empirical Relations Between Strength and Static and Dynamic Elastic Properties of Asmari and Sarvak Limestones, Two Main Oil Reservoirs in Iran
,”
J. Pet. Sci. Eng.
,
126
, pp.
78
82
. 10.1016/j.petrol.2014.12.010
42.
Sharma
,
P.
, and
Singh
,
T.
,
2008
, “
A Correlation Between P-Wave Velocity, Impact Strength Index, Slake Durability Index and Uniaxial Compressive Strength
,”
Bull. Eng. Geology Environ.
,
67
(
1
), pp.
17
22
. 10.1007/s10064-007-0109-y
43.
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Mohamed
,
I.
, and
Abdulraheem
,
A.
,
2018
, “
Development of a New Correlation to Determine the Static Young’s Modulus
,”
J. Pet. Explor. Prod. Technol.
,
8
(
1
), pp.
17
30
. 10.1007/s13202-017-0316-4
44.
Brotons
,
V.
,
Tomás
,
R.
,
Ivorra
,
S.
,
Grediaga
,
A.
,
Martínez-Martínez
,
J.
,
Benavente
,
D.
, and
Gómez-Heras
,
M.
,
2016
, “
Improved Correlation Between the Static and Dynamic Elastic Modulus of Different Types of Rocks
,”
Mater. Struct.
,
49
(
8
), pp.
3021
3037
. 10.1617/s11527-015-0702-7
45.
Chu
,
Z.
,
1987
,
Acoustic Logging Principle
,
Petroleum Industry Press
,
Beijing
.
46.
Plumb
,
R.
,
1994
, “
Influence of Composition and Texture on the Failure Properties of Clastic Rocks
,”
Rock Mechanics in Petroleum Engineering
,
Delft, Netherlands
,
Aug. 29–31
.
47.
Bahrami
,
B.
,
Mohsenpour
,
S.
,
Noghabi
,
H. R. S.
,
Hemmati
,
N.
, and
Tabzar
,
A.
,
2019
, “
Estimation of Flow Rates of Individual Phases in an Oil-Gas-Water Multiphase Flow System Using Neural Network Approach and Pressure Signal Analysis
,”
Flow Meas. Instrum.
,
66
, pp.
28
36
. 10.1016/j.flowmeasinst.2019.01.018
48.
Tabaeh
,
H. M.
, and
Mohammad
,
A.
,
2016
, “
Estimation of In-Situ Horizontal Stresses Using the Linear Poroelastic Model and Minifrac Test Results in Tectonically Active Area
,”
Russ. J. Earth Sci.
,
16
(
4
), pp.
20
33
.
You do not currently have access to this content.