Abstract

Pore-scale mechanism of the waterflooding process contributes to enhanced oil recovery, which has been widely emphasized in the petroleum industry. In this paper, pore-scale waterflooding experiments are carried out on mixed-wetted natural sandstone and 3D printed sandstone using micro-computed tomography (μ-CT). The high-resolution images of oil/water distribution in different stages of waterflooding cycles are acquired. The classification of residual oil after waterflooding is conducted using the shape factor and Euler number, which represents the shape and spatial connectivity, respectively. The in situ contact angles are measured on the segmented images and the pore-scale wettability of these two samples is analyzed. Then, the effects of pore structure, micro-fracture and wettability on the distribution of the patterns of residual oil are analyzed. The results indicate that the types of isolated, cluster, network, and film (only for natural sample) are the main forms of residual oil patterns after the waterflooding process. The negative correlation between the shape factor and the Euler number of the typical oil blocks are presented. The effect of wettability and pore geometry on the morphology of the oil/water interface is quantitatively studied. The capillary pressure is the key factor for the formation of the residual oil blocks, the morphology of which is controlled by both wettability and pore geometry.

References

1.
Song
,
R.
,
Cui
,
M.
, and
Liu
,
J.
,
2017
, “
Single and Multiple Objective Optimization of a Natural Gas Liquefaction Process
,”
Energy
,
124
, pp.
19
28
. 10.1016/j.energy.2017.02.073
2.
Hao
,
J. S.
,
Mohammadkhani
,
S.
,
Shahverdi
,
H.
,
Esfahany
,
M. N.
, and
Shapiro
,
A.
,
2019
, “
Mechanisms of Smart Waterflooding in Carbonate Oil Reservoirs—A Review
,”
J. Petrol. Sci. Eng.
,
179
, pp.
276
291
. 10.1016/j.petrol.2019.04.049
3.
Yang
,
R. F.
,
Zhang
J. Q.
,
Chen
,
H.
,
Jiang
,
R. Z.
,
Sun
,
Z.
,
Rui
,
Z. H.
,
2019
, “
The Injectivity Variation Prediction Model for Water Flooding Oilfields Sustainable Development
,”
Energy
,
189
,
116317
. 10.1016/j.energy.2019.116317
4.
Guo
,
C. H.
,
Wang
,
X.
,
Wang
,
H.
,
He
,
S.
,
Liu
,
H.
, and
Zhu
,
P.
,
2018
, “
Effect of Pore Structure on Displacement Efficiency and Oil-Cluster Morphology by Using Micro Computed Tomography (μCT) Technique
,”
Fuel
,
230
, pp.
430
439
. 10.1016/j.fuel.2018.05.058
5.
Gu
,
X. Y.
,
Pu
,
C. S.
,
Khan
,
N.
,
Wu
,
F. P.
,
Huang
,
F. F.
, and
Xu
,
H. X.
,
2019
, “
The Visual and Quantitative Study of Remaining Oil Micro-Occurrence Caused by Spontaneous Imbibition in Extra-Low Permeability Sandstone Using Computed Tomography
,”
Fuel
,
237
, pp.
152
162
. 10.1016/j.fuel.2018.09.014
6.
Jamaloei
,
B. Y.
,
Asghari
,
K.
,
Kharrat
,
R.
, and
Ahmadloo
,
F.
,
2010
, “
Pore-Scale Two-Phase Filtration in Imbibition Process Through Porous Media at High- and Low-Interfacial Tension Flow Conditions
,”
J. Petrol. Sci. Eng.
,
72
(
3–4
), pp.
251
269
. 10.1016/j.petrol.2010.03.026
7.
Song
,
W.
, and
Kovscek
,
A. R.
,
2016
, “
Direct Visualization of Pore-Scale Fines Migration and Formation Damage During Low-Salinity Waterflooding
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1276
1283
. 10.1016/j.jngse.2016.07.055
8.
Di
,
Q. F.
,
Zhang
,
J. N.
,
Hua
,
S.
,
Chen
,
H. J.
, and
Gu
,
C. Y.
,
2017
, “
Visualization Experiments on Polymer-Weak Gel Profile Control and Displacement by NMR Technique
,”
Petrol. Explor. Dev.
,
44
(
2
), pp.
294
298
. 10.1016/S1876-3804(17)30033-2
9.
Romero-Zeron
,
L. B.
,
Li
,
L.
,
Ongsurakul
,
S.
, and
Balcom
,
B.
,
2009
, “
Visualization of Waterflooding Through Unconsolidated Porous Media Using Magnetic Resonance Imaging
,”
Petrol Sci. Technol.
,
27
(
17
), pp.
1993
2009
. 10.1080/10916460802611267
10.
Cheng
,
Y. C.
,
Di
,
Q. F.
,
Gu
,
C. Y.
,
Ye
,
F.
,
Hua
,
S.
, and
Yang
,
P. Q.
,
2015
, “
Visualization Study on Fluid Distribution and End Effects in Core Flow Experiments With Low-Field MRI Method
,”
J. Hydrodyn.
,
27
(
2
), pp.
187
194
. 10.1016/S1001-6058(15)60471-1
11.
Krummel
,
A. T.
,
Datta
,
S. S.
,
Münster
,
S.
, and
Weitz
,
D. A.
,
2013
, “
Visualizing Multiphase Flow and Trapped Fluid Configurations in a Model Three-Dimensional Porous Medium
,”
AICHE J.
,
59
(
3
), pp.
1022
1029
. 10.1002/aic.14005
12.
Li
,
Y. Q.
,
Yang
,
Y.
,
Sun
,
X. D.
,
Yang
,
D.
,
Zhang
,
N.
,
Yang
,
H. J.
,
Guo
,
H.
, and
Zheng
,
J.
,
2014
, “
The Application of Laser Confocal Method in Microscopic Oil Analysis
,”
J. Petrol. Sci. Eng.
,
120
, pp.
52
60
. 10.1016/j.petrol.2014.04.005
13.
Song
,
R.
,
Liu
,
J. J.
, and
Cui
,
M. M.
,
2017
, “
A New Method to Reconstruct Structured Mesh Model From Micro-Computed Tomography Images of Porous Media and Its Application
,”
Int. J. Heat Mass Transfer.
,
109
, pp.
705
715
. 10.1016/j.ijheatmasstransfer.2017.02.053
14.
Wang
,
Y.
,
Song
,
R.
,
Liu
,
J. J.
,
Cui
,
M. M.
, and
Ranjith
,
P. G.
,
2019
, “
Pore Scale Investigation on Scaling-Up Micro-Macro Capillary Number and Wettability on Trapping and Mobilization of Residual Fluid
,”
J. Contam. Hydrol.
,
225
, p.
103499
. 10.1016/j.jconhyd.2019.103499
15.
Song
,
R.
,
Wang
,
Y.
,
Liu
,
J. J.
,
Cui
,
M. M.
, and
Lei
,
Y.
,
2019
, “
Comparative Analysis on Pore-Scale Permeability Prediction on Micro-CT Images of Rock Using Numerical and Empirical Approaches
,”
Energy Sci. Eng.
,
7
(
6
),
2842
. 10.1002/ese3.465
16.
Zhu
,
H. L.
,
Wang
,
S. F.
,
Yin
,
G. J.
,
Chen
,
Q.
,
Xu
,
F. L.
, and
Peng
,
W.
,
2018
, “
Study of the Numerical Simulation of Tight Sandstone Gas Molecular Diffusion Based on Digital Core Technology
,”
Petrol. Sci.
,
15
(
1
), pp.
68
76
. 10.1007/s12182-017-0210-1
17.
Andrew
,
M.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2013
, “
Pore-Scale Imaging of Geological Carbon Dioxide Storage Under In Situ Conditions
,”
Geophys. Res. Lett.
,
40
(
15
), pp.
3915
3918
. 10.1002/grl.50771
18.
Wang
,
D. G.
,
Hu
,
Y. L.
, and
Sun
,
J. J.
,
2015
, “
X-Ray MCT Based Numerical Analysis of Residual Oil Pore-Scale Characteristics Under Various Displacing Systems
,”
J. Petrol. Sci. Eng.
,
135
, pp.
168
176
. 10.1016/j.petrol.2015.09.015
19.
Gu
,
X. Y.
,
Pu
,
C. S.
,
Huang
,
H.
,
Khan
,
N.
,
Liu
,
J.
,
He
,
Y. L.
,
Jing
,
C.
,
Huang
,
F. F.
, and
Qi
,
A.
,
2018
, “
The Visual and Quantitative Study of the Microoccurrence of Irreducible Water at the Pore and Throat System in a Low-Permeability Sandstone Reservoir by Using Microcomputerized Tomography
,”
Geofluids
,
2018
,
6062475
. 10.1155/2018/6062475
20.
Scanziani
,
A.
,
Singh
,
K.
,
Bultreys
,
T.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2018
, “
In Situ Characterization of Immiscible Three-Phase Flow at the Pore Scale for a Water-Wet Carbonate Rock
,”
Adv. Water Resour.
,
121
, pp.
446
455
. 10.1016/j.advwatres.2018.09.010
21.
Li
,
J. J.
,
Jiang
,
H. Q.
,
Wang
,
C.
,
Zhao
,
Y. Y.
,
Gao
,
Y. J.
,
Pei
,
Y. L.
,
Wang
,
C. C.
, and
Dong
,
H.
,
2017
, “
Pore-Scale Investigation of Microscopic Remaining Oil Variation Characteristics in Water-Wet Sandstone Using CT Scanning
,”
J. Nat. Gas Sci. Eng.
,
48
, pp.
36
45
. 10.1016/j.jngse.2017.04.003
22.
Li
,
J. J.
,
Gao
,
Y. J.
,
Jiang
,
H. Q.
,
Liu
,
Y.
, and
Dong
,
H.
,
2018
, “
Pore-Scale Imaging of the Oil Cluster Dynamic During Drainage and Imbibition Using In Situ X-Ray Microtomography
,”
Geofluids
,
2018
,
7679607
. 10.1155/2018/7679607
23.
Yang
,
Y. F.
,
Yang
,
H. Y.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W. D.
,
Zhang
,
K.
, and
Luquot
,
L.
,
2019
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
. 10.1115/1.4043131
24.
Akai
,
T.
,
Alhammadi
,
A. M.
,
Blunt
,
M. J.
, and
Bijeljic
,
B.
,
2019
, “
Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation
,”
Transport Porous Med.
,
127
(
2
), pp.
393
414
. 10.1007/s11242-018-1198-8
25.
Mohammed
,
M.
, and
Babadagli
,
T.
,
2015
, “
Wettability Alteration: A Comprehensive Review of Materials/Methods and Testing the Selected Ones on Heavy-Oil Containing Oil-Wet Systems
,”
Adv. Colloid Interface Sci.
,
220
, pp.
54
77
. 10.1016/j.cis.2015.02.006
26.
Bartels
,
W. B
,
Rücker
,
M.
,
Berg
,
S.
,
Mahani
,
H.
,
Georgiadis
,
A.
,
Fadili
,
A.
,
Brussee
,
N.
,
Coorn
,
A.
,
Linde
,
H.
,
Hinz
,
C.
,
Jacob
,
A.
,
Wagner
,
C.
,
Henkel
,
S.
,
Enzmann
,
F.
,
Bonnin
,
A.
,
Stampanoni
,
M.
,
Ott
,
H.
,
Blunt
,
M.
, and
Hassanizadeh
,
S. M.
,
2017
, “
Fast X-Ray Micro-CT Study of the Impact of Brine Salinity on the Pore-Scale Fluid Distribution During Waterflooding
,”
Petrophysics
,
58
(
1
), pp.
36
47
. SPWLA-2017-v58n1a4
27.
Blunt
,
M. J.
,
2017
,
Multiphase Flow in Permeable Media: A Pore-Scale Perspective
,
Cambridge University Press
,
London, UK
.
28.
Santini
,
M.
,
Guilizzoni
,
M.
, and
Fest-Santini
,
S.
,
2013
, “
X-Ray Computed Microtomography for Drop Shape Analysis and Contact Angle Measurement
,”
J. Colloid Interf. Sci.
,
409
, pp.
204
210
. 10.1016/j.jcis.2013.06.036
29.
Goda
,
H. M.
, and
Behrenbruch
,
P.
,
2011
, “
Wettability Quantification-Prediction of Wettability for Australian Formations
,”
International Petroleum Technology Conference
,
Bangkok, Thailand
,
Nov. 15–17, 2011
.
30.
Donaldson
,
E. C.
,
Thomas
,
R. D.
, and
Lorenz
,
P. B.
,
1969
, “
Wettability Determination and its Effect on Recovery Efficiency
,”
SPE J.
,
9
(
01
), pp.
13
20
. 10.2118/2338-PA
31.
AlRatrout
,
A.
,
Raeini
,
A. Q.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2017
, “
Automatic Measurement of Contact Angle in Pore-Space Images
,”
Adv. Water Resour.
,
109
, pp.
158
169
. 10.1016/j.advwatres.2017.07.018
32.
Alhammadi
,
A. M.
,
Alratrout
,
A.
,
Singh
,
K.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2017
, “
In Situ Characterization of Mixed-Wettability in a Reservoir Rock at Subsurface Conditions
,”
Sci. Rep.
,
7
(
1
), p.
10753
. 10.1038/s41598-017-10992-w
33.
Alratrout
,
A.
,
Blunt
,
M. J.
, and
Bijeljic
,
B.
,
2018
, “
Spatial Correlation of Contact Angle and Curvature in Pore-Space Images
,”
Water Resour. Res.
,
54
(
9
), pp.
6133
6152
. 10.1029/2017WR022124
34.
AlRatrout
,
A.
,
Blunt
,
M. J.
, and
Bijeljic
,
B.
,
2018
, “
Wettability in Complex Porous Materials, the Mixed-Wet State, and its Relationship to Surface Roughness
,”
Proc. Natl. Acad. Sci. USA
,
115
(
36
), pp.
8901
8906
. 10.1073/pnas.1803734115
35.
Armstrong
,
R. T.
,
Porter
,
M. L.
, and
Wildenschild
,
D.
,
2012
, “
Linking Pore-Scale Interfacial Curvature to Column-Scale Capillary Pressure
,”
Adv. Water Resour.
,
46
(
9
), pp.
55
62
. 10.1016/j.advwatres.2012.05.009
36.
Andrew
,
M.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2014
, “
Pore by Pore Capillary Pressure Measurements Using X-Ray Microtomography at Reservoir Conditions: Curvature, Snap-Off, and Remobilization of Residual CO2
,”
Water Resour. Res.
,
50
(
11
), pp.
8760
8774
. 10.1002/2014WR015970
37.
Garing
,
C.
,
De Chalendar
,
J. A.
,
Voltolini
,
M.
,
Ajo-Franklin
,
J. B.
, and
Benson
,
S. M.
,
2017
, “
Pore-Scale Capillary Pressure Analysis Using Multi-Scale X-Ray Micromotography
,”
Adv. Water Resour.
,
104
, pp.
223
241
. 10.1016/j.advwatres.2017.04.006
38.
Lin
,
Q. Y.
,
Bijeljic
,
B.
,
Pini
,
R.
,
Blunt
,
M. J.
, and
Krevor
,
S.
,
2018
, “
Imaging and Measurement of Pore-Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability
,”
Water Resour. Res.
,
54
(
9
), pp.
7046
7060
. 10.1029/2018WR023214
39.
Buades
,
A.
,
Coll
,
B.
, and
Morel
,
J. M.
, “
Nonlocal Image and Movie Denoising
,”
Int. J. Comput.
,
76
(
2
), pp.
123
139
. 10.1007/s11263-007-0052-1
40.
Jones
,
A. C.
,
Arns
,
C. H.
,
Sheppard
,
A. P.
,
Hutmacher
,
D. W.
,
Milthorpe
,
B. K.
, and
Knackstedt
,
M. A.
,
2007
, “
Assessment of Bone Ingrowth Into Porous Biomaterials Using ΜCT
,”
Biomaterials
,
28
(
15
), pp.
2491
2504
. 10.1016/j.biomaterials.2007.01.046
41.
Schlüter
,
S.
,
Sheppard
,
A.
,
Brown
,
K.
, and
Wildenschild
,
D.
,
2014
, “
Image Processing of Multiphase Images Obtained Via X-Ray Microtomography: A Review
,”
Water Resour. Res.
,
50
(
4
), pp.
3615
3639
. 10.1002/2014WR015256
42.
Prodanović
,
M.
,
Lindquist
,
W. B.
, and
Seright
,
R. S.
,
2007
, “
3D Image-Based Characterization of Fluid Displacement in a Berea Core
,”
Adv. Water Resour.
,
30
(
2
), pp.
214
226
. 10.1016/j.advwatres.2005.05.015
43.
Andersson
,
L.
,
Herring
,
A.
,
Schlueter
,
S.
, and
Wildenschild
,
D.
,
2018
, “
Defining a Novel Pore-Body to Pore-Throat “Morphological Aspect Ratio” That Scales With Residual Non-Wetting Phase Capillary Trapping in Porous Media
,”
Adv. Water Resour.
,
122
, pp.
251
262
. 10.1016/j.advwatres.2018.10.009
44.
Rabbani
,
H. S.
,
Zhao
,
B. Z.
,
Juanes
,
R.
, and
Shokri
,
N.
,
2018
, “
Pore Geometry Control of Apparent Wetting in Porous Media
,”
Sci. Rep. UK
,
8
(
1
), p.
15729
. 10.1038/s41598-018-34146-8
45.
Rabbani
,
H. S.
,
Joekar-Niasar
,
V.
, and
Shokri
,
N.
,
2016
, “
Effects of Intermediate Wettability on Entry Capillary Pressure in Angular Pores
,”
J. Colloid Interf. Sci.
,
473
, pp.
34
43
. 10.1016/j.jcis.2016.03.053
You do not currently have access to this content.