Abstract

The importance of gas turbine blades is to convert the thermal energy into shaft work output, which makes the turbine blades as one of the critical components of the gas turbines. Besides the mechanical stresses caused by the centrifugal force and the fluid forces, the thermal stresses arise because of the temperature gradient within the blade materials. This paper aims to have a uniform circumferential temperature field at the combustor exit, consequently reducing the thermal stresses caused by the non-uniform temperature distribution along the turbine blade. The validation of the simulation results with the experiments showed an acceptable agreement with the available experimental data. The agreement includes the uniformity factor and the normalized mixture fraction at two different flowrates. Furthermore, another location of the guide vanes, external guide vanes, was experimentally and numerically tested. The results show that the external guide vanes with a 30 deg orientation gave the most uniform temperature flow for the two different flowrates. Compared with the internal guide vanes with the same orientation, the external guide vanes gave a 7.5% higher uniformity factor and a 2% lower pressure drop. The main reason for this result is that the external guide vanes direct the cold stream to penetrate the dilution zone with an angle enhance the swirling effect which are the main factors for excellent mixing, while the pressure drop is lower as the external guide vanes are facing the lower flowrate which is the secondary stream. Another advantage of the external guide vanes over the internal ones is that they are subjected to less thermal stresses as they are facing the cold flow. Furthermore, the external guide vanes are reachable and easy to maintain compared with the internal guide vanes.

References

1.
Powel
,
S. F.
,
1991
, “
On the Leading Edge: Combining Maturity and Advanced Technology on the F404 Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
113
(
1
), pp.
1
10
. 10.1115/1.2906525
2.
Corde
,
J. C.
, “
SNECMA M88 Engine Development Status
,”
ASME J. Eng. Gas Turbines Power
,
113
(
1
), pp.
20
25
. 10.1115/1.2906526
3.
Jenny
,
P.
,
Lenherr
,
C.
,
Abhari
,
R. S.
, and
Kalfas
,
A.
,
2012
, “
Effect of Hot Streak Migration on Unsteady Blade Row Interaction in an Axial Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051020
. 10.1115/1.4004447
4.
Basol
,
A. M.
,
Jenny
,
P.
,
Ibrahim
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2011
, “
Hot Streak Migration in a Turbine Stage: Integrated Design to Improve Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061901
. 10.1115/1.4002349
5.
Busby
,
J. J.
,
Sondak
,
D. D.
,
Staubach
,
B. B.
, and
Davis
,
R. R.
,
1999
, “
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
.”
ASME J. Turbomach.
,
122
(
1
), pp.
62
67
. 10.1115/1.555428
6.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
. 10.1115/1.4002987
7.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
.”
ASME J. Turbomach.
,
115
(
4
), pp.
657
666
. 10.1115/1.2929300
8.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
. 10.1115/1.2987240
9.
Saxer
,
A. P.
, and
Felici
,
H. M.
,
1996
, “
Numerical Analysis of Three-Dimensional Unsteady Hot Streak Migration and Shock Interaction in a Turbine Stage
,”
ASME J. Turbomach.
,
118
(
2
), pp.
268
277
. 10.1115/1.2836636
10.
Dorney
,
D. J.
,
Davis
,
R. L.
,
Edwards
,
D. E.
, and
Madavan
,
N. K.
,
1992
, “
Unsteady Analysis of Hot Streak Migration in a Turbine Stage
,”
J. Propul. Power
,
8
(
2
), pp.
520
529
. 10.2514/3.23507
11.
Rai
,
M. M.
, and
Dring
,
R. P.
,
1990
, “
Navier–Stokes Analyses of the Redistribution of Inlet Temperature Distortions in a Turbine
,”
J. Propul. Power
,
6
(
3
), pp.
225
226
.
12.
Takahashi
,
R.
, and
Ni
,
R. H.
,
1991
, “
Unsteady Hot Streak Simulation Through 1-1 2 Stage Turbine
,”
AIAA Paper No. 91-3382
.
13.
Povey
,
T.
, and
Qureshi
,
I.
,
2008
, “
A Hot-Streak (Combustor) Simulator Suited to Aerodynamic Performance Measurements
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
6
), pp.
705
720
. 10.1243/09544100JAERO363
14.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
AIAA J. Propul. Power
,
5
(
1
), pp.
64
71
. 10.2514/3.23116
15.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot Streaks on HP Vane Surface and End Wall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
. 10.1115/1.2370748
16.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbine Power
,
133
(
3
), p.
031901
. 10.1115/1.4002039
17.
Holdeman
,
J. D.
, and
Walker
,
R.
,
1977
, “
Mixing of a Row of Jets With a Confined Crossflow
,”
AIAA J.
,
15
(
2
), pp.
243
249
. 10.2514/3.60622
18.
Gupta
,
A.
,
Ibrahim
,
M. S.
, and
Amano
,
R. S.
,
2016
, “
Effect of Jet to Mainstream Momentum Flux Ratio on Mixing Process
,”
Heat Mass Transfer
,
52
(
3
), pp.
621
634
. 10.1007/s00231-015-1582-7
19.
Holdeman
,
J. D.
,
Srinivasan
,
R.
, and
Berenfeld
,
A.
,
1984
, “
Experiments in Dilution Jet Mixing
,”
AIAA Journal
,
22
(
10
), pp.
1436
1443
. 10.2514/3.48582
20.
Stevens
,
S. J.
, and
Carrotte
,
J. F.
,
1990
, “
Experimental Studies of Combustor Dilution Zone Aerodynamics. II—Jet Development
,”
J. Propul. Power
,
6
(
4
), pp.
504
511
. 10.2514/3.25463
21.
Dai
,
W.
,
Zhang
,
Y.
,
Lin
,
Y.
,
Yang
,
Q.
, and
Zhang
,
C.
,
2014
, “
Influence of the Arrangement of Dilution Holes for Dilution Mixing in a Three-Injector Reverse Flow Combustor
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
.
22.
Hatch
,
M. S.
,
Sowa
,
W. A.
, and
Samuelsen
,
G. S.
,
1995
, “
Geometry and Flow Influences on Jet Mixing in a Cylindrical Duct
,”
J. Propul. Power
,
11
(
3
), pp.
393
402
. 10.2514/3.23857
23.
Crocker
,
D. S.
, and
Smith
,
C. E.
,
1995
, “
Numerical Investigation of Enhanced Dilution Zone Mixing in a Reverse Flow Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
117
(
2
), pp.
272
281
. 10.1115/1.2814091
24.
Elgammal
,
T.
, and
Amano
,
R. S.
,
2018
, “
Effectiveness of Central Swirlers in the Thermal Uniformity of Jet-in-Crossflow Mixing
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101202
. 10.1115/1.4040075
25.
Elgammal
,
T.
,
Ibrahim
,
M. S.
,
Amano
,
R. S.
,
Rowland
,
D.
,
Puls
,
K. S.
, and
Alabbas
,
M.
,
2016
, “
Comparative Study of Using Streamlined Bodies as a Passive Enhancer in Combustor Dilution System
,”
54th AIAA Aerospace Sciences Meeting
,
AIAASciTech
,
San Diego, CA
,
Jan. 3–8
http://dx.doi.org/10.2514/6.2016-0492.
26.
Selim
,
M. O.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2019
,”
Control Methods to Improve Combustor Exit Temperature Uniformity
,
AIAA 2019-1773
,
AIAASciTech
,
San Diego, CA
,
Jan. 7–11
https://doi.org/10.2514/6.2019-1773.
You do not currently have access to this content.