Abstract

Flue gas recirculation (FGR) is an effective method to reduce NOx emissions from the combustion of fuels, such as natural gas. Nitrogen, carbon dioxide, and water are the main components of flue gas. Nitrogen is an inert gas, and water can be condensed out of the effluent before FGR. However, recycled CO2 can alter the physical and chemical combustion characteristics of a fuel. This research investigated the effects of CO2 on CH4/air laminar diffusion flames, both experimentally and numerically. Experiments used laser-induced fluorescence to measure OH and CH distributions in the resulting flames, at different CO2 concentrations. Numerical methods were used to investigate the reaction mechanism and predict temperature and species concentration fields, as well as the NOx formation. Experiments showed that the CH fluorescence intensities decreased with the addition of CO2, while the OH fluorescence intensities increased. Both the directed relation graph method and the sensitivity analysis method were used to reduce the GRI-mech 3.0 mechanism. The chemical kinetics of methane combustion were analyzed using the reduced mechanism with the diffusion opposed-flow flame model in the chemkin 4.1 software package to determine the main reactions among the major species. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased. These CFD simulations using the reduced mechanism were in agreement with the experimental data. Thus, the reduced mechanism was then used to predict NO concentrations. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased, and, as a result, lower amounts of NO were predicted.

References

References
1.
Askari
,
O.
,
Metghalchi
,
M.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion Characteristics of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
. 10.1115/1.4007911
2.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
. 10.1115/1.4026204
3.
Hu
,
X.
,
Yu
,
Q.
,
Liu
,
J.
, and
Sun
,
N.
,
2014
, “
Investigation of Laminar Flame Speeds of CH4/O2/CO2, Mixtures at Ordinary Pressure and Kinetic Simulation
,”
Energy
,
70
(
3
), pp.
626
634
. 10.1016/j.energy.2014.04.029
4.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1
), pp.
104
119
. 10.1016/j.combustflame.2007.05.003
5.
Wang
,
L.
,
Liu
,
Z.
,
Chen
,
S.
,
Zheng
,
C.
, and
Li
,
J.
,
2013
, “
Physical and Chemical Effects of CO2 and H2O Additives on Counterflow Diffusion Flame Burning Methane
,”
Energy Fuels
,
27
(
12
), pp.
7602
7611
. 10.1021/ef401559r
6.
Burbano
,
H. J.
,
Pareja
,
J.
, and
Amell
,
A. A.
,
2011
, “
Laminar Burning Velocities and Flame Stability Analysis of H/CO/Air Mixtures With Dilution of N and CO
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3232
3242
. 10.1016/j.ijhydene.2010.11.089
7.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2012
, “
Effects of Dilution With Carbon Dioxide on the Laminar Burning Velocity and Flame Stability of H2-CO Mixtures at Atmospheric Condition
,”
Combust. Flame
,
159
(
2
), pp.
482
492
. 10.1016/j.combustflame.2011.08.006
8.
Ghassan
,
N.
,
Mohammad
,
J.
, and
Hameed
,
M.
,
2014
, “
Constrained Equilibrium Modeling of Methane Oxidation in Air
,”
ASME J. Energy Resour. Technol.
,
136
(3), p.
032205
. 10.1115/1.4027692
9.
Lee
,
K.
,
Kim
,
H.
,
Park
,
P.
,
Yang
,
S.
, and
Ko
,
Y.
,
2013
, “
CO2 Radiation Heat Loss Effects on NOx Emissions and Combustion Instabilities in Lean Premixed Flames
,”
Fuel
,
106
(
2
), pp.
682
689
. 10.1016/j.fuel.2012.12.048
10.
Díaz González
,
C.
,
Arrieta
,
A. A.
, and
Suarez
,
J. L.
,
2009
, “
Comparison of Combustion Properties of Simulated Biogas and Methane
,”
CT&F, Cienc., Tecnol. Futuro
,
3
(
5
), pp.
225
236
.
11.
Berhan
,
S.
,
Atreya
,
A.
,
Chernovsky
,
M.
, and
Sackster
,
K.
,
2001
, “
Effect of Fuel Dilution by CO2 on Spherical Diffusion Flames in Microgravity
,”
39th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11, 2001
,
AIAA
,
622
.
12.
Park
,
J.
,
Bae
,
D. S.
,
Cha
,
M. S.
,
Yun
,
J. H.
,
Keel
,
S. I.
,
Changcho
,
H. C.
,
Kim
,
T. K.
, and
Ha
,
J. S.
,
2008
, “
Flame Characteristics in H/CO Synthetic Gas Diffusion Flames Diluted With CO: Effects of Radiative Heat Loss and Mixture Composition
,”
Int. J. Hydrogen Energy
,
33
(
23
), pp.
7256
7264
. 10.1016/j.ijhydene.2008.07.063
13.
Lee
,
C. E.
,
Lee
,
S. R.
,
Han
,
J. W.
, and
Park
J.
,
2001
, “
Numerical Study on Effect of CO2 Addition in Flame Structure and NOx Formation of CH4-Air Counterflow Diffusion Flames
,”
Int. J. Energy Res.
,
25
(
4
), pp.
343
354
. 10.1002/er.686
14.
Samanta
,
A.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2010
, “
Effect of CO2 Dilution on Flame Structure and Soot and NO Formations in CH4-Air Non-Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
124501
. 10.1115/1.4001809
15.
Hinton
,
N.
, and
Stone
,
R.
,
2014
, “
Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures
,”
Fuel
,
116
, pp.
743
750
. 10.1016/j.fuel.2013.08.069
16.
Wang
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
,
Metghalchi
,
H.
, and
Levendis
,
Y. A.
,
2019
, “
Effects of Carbon Dioxide on Laminar Burning Speed and Flame Instability of Methane/Air and Propane/Air Mixtures: A Literature Review
,”
Energy Fuels
,
33
(
10
), pp.
9403
9418
. 10.1021/acs.energyfuels.9b02346
17.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane-Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
. 10.1115/1.4042411
18.
Liu
,
F.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
,
2001
, “
The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx, Formation
,”
Combust. Flame
,
125
(
1
), pp.
778
787
. 10.1016/S0010-2180(00)00241-8
19.
Park
,
J.
,
Kim
,
S.-G.
,
Lee
,
K.-M.
, and
Kim
,
T. K.
,
2002
, “
Chemical Effect of Diluents on Flame Structure and NO Emission Characteristic in Methane/air Counterflow Diffusion Flame
,”
Int. J. Energy Res.
,
26
(
13
), pp.
1141
1160
. 10.1002/er.841
20.
Dong
,
H.
,
Zhang
,
Y.
, and
Gu
,
Z.
,
2014
, “
Effects of Diluents on NOx, Formation in co-Flow CH4/air Diffusion Flames
,”
J. Mater. Sci.
,
31
(
6
), pp.
1002
1007
.
21.
Glarborg
,
P.
, and
Bentzen
,
L. L. B.
,
2008
, “
Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane
,”
Energy Fuels
,
22
(
1
), pp.
291
296
. 10.1021/ef7005854
22.
Donbar
,
J. M.
,
Driscoll
,
J. F.
, and
Carter
,
C. D.
,
2000
, “
Reaction Zone Structure in Turbulent non-Premixed jet Flames From CH-OH PLIF Images
,”
Combust. Flame
,
122
(
1
), pp.
1
19
. 10.1016/S0010-2180(00)00098-5
23.
Gashi
,
S.
,
Hult
,
J.
,
Jenkins
,
K. W.
,
Chakraborty
,
N.
,
Cant
,
S.
, and
Kaminski
,
C. F.
,
2005
, “
Curvature and Wrinkling of Premixed Flame Kernels-Comparisons of OH PLIF and DNS Data
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
809
817
. 10.1016/j.proci.2004.08.003
24.
Gopalakrishnan
,
P.
,
Bobba
,
M. K.
, and
Seitzman
,
J. M.
,
2007
, “
Controlling Mechanisms for Low NOx Emissions in a Non-Premixed Stagnation Point Reverse Flow Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3401
3408
. 10.1016/j.proci.2006.07.256
25.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
. 10.1016/j.proci.2004.08.145
26.
Zhang
,
L.
,
Hui
,
S.
,
Yang
,
Y.
,
Sun
,
R.
,
Ismail
,
T. M.
,
Abd El-Salam
,
M.
, and
Ren
,
X.
,
2019
, “
Numerical and Experimental Assessment of a Novel Multi-Nozzle Burner With CO2 Diluent to Improve the Emissions From a Swirling Flame in a Combustion Chamber
,”
Energy Fuels
,
33
(
8
), pp.
7869
7885
. 10.1021/acs.energyfuels.9b01446
27.
Luque
,
J.
, and
Crosley
,
D. R.
,
1999
, “
LIFBASE: Database and spectral simulation program (Version 1.5)
,”
SRI Int. Report MP
,
99
(
9
). https://www.sri.com/engage/products-solutions/lifbase
28.
Yang
,
Y.
,
Zhang
,
L.
,
Sun
,
R.
,
Wang
,
Z.
,
Li
,
Y.
,
Ren
,
X.
,
2018
,
International Conference on Energy, Ecology and Environment (ICEEE)
,
Melbourne, Australia
,
Nov. 21–25
,
Swinburne University of Technology
.
29.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M. M.
,
Nigel
,
W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2003
, “
GRI-Mech3.0 Annual Report
,”
SRI Int.
http://www.me.berkeley.edu/gri_mech/
30.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
. 10.1115/1.4039746
31.
Turányi
,
T.
,
1990
, “
Sensitivity Analysis of Complex Kinetic Systems: Tools and Applications
,”
J. Math. Chem.
,
5
(
3
), pp.
203
248
. 10.1007/BF01166355
32.
Ravikrishna
,
R. V.
, and
Laurendeau
,
N. M.
,
2000
, “
Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Methane-Air and Ethane-Air Counterflow Diffusion Flames
,”
Combust. Flame
,
120
(
3
), pp.
372
382
. 10.1016/S0010-2180(99)00101-7
33.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
. 10.1016/j.fuel.2016.10.017
34.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2 and HCL From Co-Firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
. 10.1016/j.fuel.2017.09.049
35.
Sabia
,
P.
,
Lavadera
,
M. L.
,
Giudicianni
,
P.
,
Sorrentino
,
G.
,
Ragucci
,
R.
, and
de Joannon
,
M.
,
2015
, “
CO2, and H2O Effect on Propane Auto-Ignition Delay Times Under Mild Combustion Operative Conditions
,”
Combust. Flame
,
162
(
3
), pp.
533
543
. 10.1016/j.combustflame.2014.08.009
36.
Jahangirian
,
S.
,
2009
,
Combustion and Chemical Kinetics Study of Jet Fuel, Biogas and Solid Fuel in Diffusion Flames
,
Michigan State University
,
East Lansing, MI
.
37.
Mardani
,
A.
,
Tabejamaat
,
S.
, and
Hassanpour
,
S.
,
2013
, “
Numerical Study of CO and CO2, Formation in CH4/H2, Blended Flame Under MILD Condition
,”
Combust. Flame
,
160
(
9
), pp.
1636
1649
. 10.1016/j.combustflame.2013.04.003
38.
Jahangirian
,
S.
,
Engeda
,
A.
, and
Wichman
,
I. S.
,
2009
, “
Thermal and Chemical Structure of Biogas Counterflow Diffusion Flames
,”
Energy Fuels
,
23
(
4
), pp.
5312
5321
. 10.1021/ef9002044
39.
Li
,
S. C.
, and
Williams
,
F. A.
,
1999
, “
NOx Formation in Two-Stage Methane–Air Flames
,”
Combust. Flame
,
118
(
3
), pp.
399
414
. 10.1016/S0010-2180(99)00002-4
40.
Giles
,
D. E.
,
Som
,
S.
, and
Aggarwal
,
S. K.
,
2006
, “
NOx Emission Characteristics of Counterflow Syngas Diffusion Flames with Airstream Dilution
,”
Fuel
,
85
(
12
), pp.
1729
1742
. 10.1016/j.fuel.2006.01.027
You do not currently have access to this content.