Abstract

Based on the experimental and the calculated results, the differences and similarities of ignition characteristics for different gasoline surrogate fuels have been investigated in this paper. The results show that the low-temperature ignition characteristics of different surrogate models present difference, while the high-temperature ignition characteristics show similarity. Kinetic analysis found that for different surrogate models, the low-T ignition processes are all dominated by the primary dehydrogenation and oxidation reactions of paraffins. Therefore, the initial concentration of the paraffin in surrogate model is critical to the ignition process and is the root cause of the low-T ignition differences. While at high-T, the ignition processes are all controlled by the small molecular reactions related to OH radical, and OH radical features are basically the same, so ignitions generally show similarity. Meanwhile, ethanol and 2,4,4-trimethyl-1-pentene (DIB) can promote the high-T ignition processes, and its content determines the slight difference of high-T ignition. The work of this paper deepens the understanding of the chemical reaction mechanism and also provides the improvement scheme for the optimization and creation of the mechanism of the surrogate fuels.

References

References
1.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
. 10.1115/1.4006655
2.
Xie
,
H.
,
Lu
,
J.
,
Chen
,
T.
,
Li
,
L.
,
Li
,
C.
, and
Zhao
,
H.
,
2014
, “
Chemical Effects of the Incomplete-Oxidation Products in Residual Gas on the Gasoline HCCI Auto-Ignition
,”
Combust. Sci. Technol.
,
186
(
3
), pp.
273
296
. 10.1080/00102202.2013.858714
3.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
, and
Flowers
,
D. L.
,
2007
, “
Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
332
337
. 10.1115/1.2794768
4.
Pera
,
C.
, and
Knop
,
V.
,
2012
, “
Methodology to Define Gasoline Surrogates Dedicated to Auto-Ignition in Engines
,”
Fuel
,
96
, pp.
59
69
. 10.1016/j.fuel.2012.01.008
5.
Pitz
,
W. J.
,
Cernansky
,
N. P.
,
Dryer
,
F. L.
,
Egolfopoulos
,
F. N.
,
Farrell
,
J. T.
,
Friend
,
D. G.
, and
Pitsch
,
H.
,
2007
,
Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels
,
SAE International
,
Warrendale, PA
.
6.
Shafagh
,
I.
,
Hughes
,
K. J.
, and
Pourkashanian
,
M.
,
2011
, “
Application of Ab Initio Quantum Mechanical Calculations to Investigate Oxidation of C-7 and C-14 Methyl Esters: An Alternative Fuel
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
011201
. 10.1115/1.4003677
7.
Zheng
,
D.
, and
Zhong
,
B.-J.
,
2012
, “
Chemical Kinetic Model for Ignition of Three-Component Fuel Comprising Iso-Octane/n-Heptane/Ethanol
,”
Acta Phys. Chim. Sin.
,
28
(
9
), pp.
2029
2036
. 10.3866/PKU.WHXB201207042
8.
Zhong
,
B.-J.
, and
Zheng
,
D.
,
2012
, “
Chemical Kinetic Mechanism of a Three-Component Fuel Composed of Iso-Octane/n-Heptane/Ethanol
,”
Combust. Sci. Technol.
,
185
(
4
), pp.
627
644
. 10.1080/00102202.2012.739223
9.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
. 10.1115/1.4036254
10.
Monteiro
,
E.
, and
Rouboa
,
A.
,
2011
, “
Measurements of the Laminar Burning Velocities for Typical Syngas–Air Mixtures at Elevated Pressures
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031002
. 10.1115/1.4004607
11.
Ranzi
,
E.
,
Faravelli
,
T.
,
Gaffuri
,
P.
,
Sogaro
,
A.
,
D'Anna
,
A.
, and
Ciajolo
,
A.
,
1997
, “
A Wide-Range Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
108
(
1–2
), pp.
24
42
. 10.1016/S0010-2180(95)00274-X
12.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
. 10.1016/S0010-2180(01)00373-X
13.
Tanaka
,
S.
,
Ayala
,
F.
, and
Keck
,
J. C.
,
2003
, “
A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine
,”
Combust. Flame
,
133
(
4
), pp.
467
481
. 10.1016/S0010-2180(03)00057-9
14.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
. 10.1016/j.combustflame.2008.05.002
15.
Wang
,
Y.
,
Yao
,
M.
, and
Zheng
,
Z.
,
2013
, “
A Semi-Detailed Chemical Kinetic Model of a Gasoline Surrogate Fuel for Internal Combustion Engine Applications
,”
Fuel
,
113
, pp.
347
356
. 10.1016/j.fuel.2013.05.076
16.
Hashimoto
,
K.
,
Koshi
,
M.
,
Miyoshi
,
A.
,
Murakami
,
Y.
,
Oguchi
,
T.
,
Sakai
,
Y.
,
Ando
,
H.
, and
Tsuchiya
,
K.
,
2013
,
Development of Gasoline Combustion Reaction Model
,
SAE International
,
Warrendale, PA
.
17.
Naik
,
C. V.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Sjöberg
,
M.
,
Dec
,
J. E.
,
Orme
,
J.
,
Curran
,
H. J.
, and
Simmie
,
J. M.
,
2005
,
Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine
,
SAE International
,
Warrendale, PA
.
18.
Li
,
Y.-R.
,
Pei
,
Y.-Q.
,
Qin
,
J.
, and
Zhang
,
M.
,
2014
, “
A Reaction Mechanism of Polycyclic Aromatic Hydrocarbons for Gasoline Surrogate Fuels TRF
,”
Acta Phys. Chim. Sin.
,
30
(
6
), pp.
1017
1026
. 10.3866/PKU.WHXB201401251
19.
Xiao
,
G.
,
Zhang
,
Y.-s.
, and
Jiang
,
G.-J.
,
2016
, “
Systematic Construction and Validation of the Reduced Chemical Kinetic Model of Gasoline Multi-Component Surrogate Fuel
,”
Acta Phys.-Chim. Sin.
,
32
(
4
), pp.
879
892
. 10.3866/PKU.WHXB201601261
20.
Andrae
,
J. C. G.
,
2008
, “
Development of a Detailed Kinetic Model for Gasoline Surrogate Fuels
,”
Fuel
,
87
(
10–11
), pp.
2013
2022
. 10.1016/j.fuel.2007.09.010
21.
Andrae
,
J. C. G.
, and
Head
,
R. A.
,
2009
, “
HCCI Experiments With Gasoline Surrogate Fuels Modeled by a Semidetailed Chemical Kinetic Model
,”
Combust. Flame
,
156
(
4
), pp.
842
851
. 10.1016/j.combustflame.2008.10.002
22.
Zheng
,
Z.-L.
, and
Liang
,
Z.-L.
,
2015
, “
Reduced Chemical Kinetic Model of a Gasoline Surrogate Fuel for HCCI Combustion
,”
Acta Physico-Chimica Sinica
,
31
(
7
), pp.
1265
1274
. 10.3866/PKU.WHXB201505131
23.
Zhong
,
B.-J.
, and
Zheng
,
D.
,
2014
, “
A Chemical Mechanism for Ignition and Oxidation of Multi-Component Gasoline Surrogate Fuels
,”
Fuel
,
128
, pp.
458
466
. 10.1016/j.fuel.2014.03.044
24.
Gauthier
,
B. M.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures
,”
Combust. Flame
,
139
(
4
), pp.
300
311
. 10.1016/j.combustflame.2004.08.015
25.
Fikri
,
M.
,
Herzler
,
J.
,
Starke
,
R.
,
Schulz
,
C.
,
Roth
,
P.
, and
Kalghatgi
,
G. T.
,
2008
, “
Autoignition of Gasoline Surrogates Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
152
(
1–2
), pp.
276
281
. 10.1016/j.combustflame.2007.07.010
26.
Cancino
,
L. R.
,
Fikri
,
M.
,
Oliveira
,
A. A. M.
, and
Schulz
,
C.
,
2009
, “
Autoignition of Gasoline Surrogate Mixtures at Intermediate Temperatures and High Pressures: Experimental and Numerical Approaches
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
501
508
. 10.1016/j.proci.2008.06.180
27.
Cancino
,
L. R.
,
Fikri
,
M.
,
Oliveira
,
A. A. M.
, and
Schulz
,
C.
,
2011
, “
Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling
,”
Fuel
,
90
(
3
), pp.
1238
1244
. 10.1016/j.fuel.2010.11.003
28.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
,
McLellan
,
C. L.
,
Adigun
,
O.
,
Houf
,
W. G.
,
Chou
,
C. P.
,
Miller
,
S. F.
,
Ho
,
P.
,
Young
,
P. D.
,
Young
,
D. J.
,
Hodgson
,
D. W.
,
Petrova
,
M. V.
, and
Puduppakkam
,
K. V.
,
2006
,
CHEMKIN Release4.1
,
Reaction Design
,
San Diego, CA
.
29.
Kim
,
D.
,
Westbrook
,
C. K.
, and
Violi
,
A.
,
2019
, “
Two-Stage Ignition Behavior and Octane Sensitivity of Toluene Reference Fuels as Gasoline Surrogate
,”
Combust. Flame
,
210
, pp.
100
113
. 10.1016/j.combustflame.2019.08.019
30.
Mittal
,
G.
, and
Sung
,
C.-J.
,
2008
, “
Homogeneous Charge Compression Ignition of Binary Fuel Blends
,”
Combust. Flame
,
155
(
3
), pp.
431
439
. 10.1016/j.combustflame.2008.05.003
You do not currently have access to this content.