Abstract

Oxygen-enriched air combustion of low-grade fuels with high inorganic matter is of great interest due to the efficient burning of such fuels and mitigation of emissions. For this purpose, this study aims to investigate the combined effects of oxygen enrichment and temperature on burnout levels. The oxygen-enriched air combustion performance of two Turkish lignites with different geological ages (early Miocene-Pliocene period Kutahya-Tuncbilek (KT) lignite and Pleistocene period Adiyaman-Golbasi (AG) lignite) was investigated in a horizontal tube reactor. The lignite samples were heated slowly (10 °C/min) to the temperatures of 200–600 °C for AG lignite and 200–800 °C for KT lignite under N2/O2 atmospheres with O2 ratios of 21, 30, 40, and 50 vol%. The solid residue remained after this oxidative heat treatment was characterized by proximate/ultimate analyses, higher heating value, (HHV) thermal analysis, Fourier transform infrared spectroscopy, (FTIR) X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. It was concluded that AG lignite that is relatively younger lignite is more susceptible to the O2-enriched conditions as the treatment temperature or O2 concentration increases. It was also determined that the combined effects of temperature and O2 concentration are much more profound than the individual effects of these parameters.

References

1.
Magalhães
,
D.
,
Kazanç
,
F.
,
Riaza
,
J.
,
Erensoy
,
S.
,
Kabaklı
,
O.
, and
Chalmers
,
H.
,
2017
, “
Combustion of Turkish Lignites and Olive Residue: Experiments and Kinetic Modelling
,”
Fuel
,
203
, pp.
868
876
. 10.1016/j.fuel.2017.05.050
2.
Barzegar
,
R.
,
Yozgatligil
,
A.
, and
Atimtay
,
A. T.
,
2019
, “
Combustion Characteristics of Turkish Lignites at Oxygen-Enriched and Oxy-Fuel Combustion Conditions
,”
J. Energy Inst.
,
92
(
5
), pp.
1440
1450
. 10.1016/j.joei.2018.08.007
3.
Kayahan
,
U.
, and
Özdoğan
,
S.
,
2016
, “
Oxygen Enriched Combustion and Co-Combustion of Lignites and Biomass in a 30 kWth Circulating Fluidized Bed
,”
Energy
,
116
(
1
), pp.
317
328
. 10.1016/j.energy.2016.09.117
4.
Melikoglu
,
M.
,
2018
, “
Clean Coal Technologies: A Global to Local Review for Turkey
,”
Energy Strategy Rev.
,
22
, pp.
313
319
. 10.1016/j.esr.2018.10.011
5.
Daood
,
S. S.
,
Nimmo
,
W.
,
Edge
,
P.
, and
Gibbs
,
B. M.
,
2012
, “
Deep Staged, Oxygen Enriched Combustion of Coal
,”
Fuel
,
101
, pp.
187
196
. 10.1016/j.fuel.2011.02.007
6.
Zhu
,
S.
,
Lyu
,
Q.
, and
Zhu
,
J.
,
2019
, “
Experimental Investigation of NOx Emissions During Pulverized Char Combustion in Oxygen-Enriched Air Preheated With a Circulating Fluidized Bed
,”
J. Energy Inst.
,
92
(
5
), pp.
1388
1398
. 10.1016/j.joei.2018.09.003
7.
Bejarano
,
P. A.
, and
Levendis
,
Y. A.
,
2008
, “
Single-Coal-Particle Combustion in O2/N2 and O2/CO2 Environments
,”
Combust. Flame
,
153
(
1–2
), pp.
270
287
. 10.1016/j.combustflame.2007.10.022
8.
Bejarano
,
P. A.
, and
Levendis
,
Y. A.
,
2007
, “
Combustion of Coal Chars in Oxygen-Enriched Atmospheres
,”
Combust. Sci. Technol.
,
179
(
8
), pp.
1569
1587
. 10.1080/00102200701239272
9.
Cho
,
C. P.
,
Jo
,
S.
,
Kim
,
H. Y.
, and
Yoon
,
S. S.
,
2007
, “
Numerical Studies on Combustion Characteristics of Interacting Pulverized Coal Particles at Various Oxygen Concentration
,”
Numer. Heat Transfer, Part A
,
52
(
12
), pp.
1101
1122
. 10.1080/10407780701446549
10.
Li
,
Q.
,
Zhao
,
C.
,
Chen
,
X.
,
Wu
,
W.
, and
Li
,
Y.
,
2009
, “
Comparison of Pulverized Coal Combustion in Air and in O2/CO2 Mixtures by Thermo-Gravimetric Analysis
,”
J. Anal. Appl. Pyrolysis
,
85
(
1–2
), pp.
521
528
. 10.1016/j.jaap.2008.10.018
11.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Krochmalny
,
K.
,
Kowal
,
M.
,
Baranowski
,
M.
,
Zgóra
,
J.
, and
Czerep
,
M.
,
2019
, “
The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen
,”
ASME J. Energy Res. Technol.
,
141
(
7
), p.
070701
. 10.1115/1.4042822
12.
Meng
,
X.
,
Zhou
,
W.
,
Rokni
,
E.
,
Zhao
,
H.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2019
, “
Effects of Air Flowrate on the Combustion and Emissions of Blended Corn Straw and Pinewood Wastes
,”
ASME J. Energy Res. Technol.
,
141
(
4
), p.
042205
. 10.1115/1.4042005
13.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z. M.
,
Ruan
,
M.
,
Song
,
Z. Y.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Res. Technol.
,
140
(
7
), p.
072203
. 10.1115/1.4039445
14.
Laudal
,
D. A.
,
Benson
,
S. A.
,
Palo
,
D.
, and
Addleman
,
R. S.
,
2018
, “
Rare Earth Elements in North Dakota Lignite Coal and Lignite-Related Materials
,”
ASME J. Energy Res. Technol.
,
140
(
6
), p.
062205
. 10.1115/1.4039738
15.
Chin
,
S.
,
Jurng
,
J.
,
Lee
,
J. H.
, and
Hur
,
J. H.
,
2008
, “
Oxygen-Enriched Air for Co-Incineration of Organic Sludges With Municipal Solid Waste: A Pilot Plant Experiment
,”
Waste Manag.
,
28
(
12
), pp.
2684
2689
. 10.1016/j.wasman.2008.01.004
16.
Liu
,
G. H.
,
Ma
,
X. Q.
, and
Yu
,
Z.
,
2009
, “
Experimental and Kinetic Modeling of Oxygen-Enriched Air Combustion of Municipal Solid Waste
,”
Waste Manag.
,
29
(
2
), pp.
792
796
. 10.1016/j.wasman.2008.06.010
17.
Zhaosheng
,
Y.
,
Xiaoqian
,
M.
, and
Ao
,
L.
,
2008
, “
Kinetic Studies on Catalytic Combustion of Rice and Wheat Straw Under Air- and Oxygen-Enriched Atmospheres, by Using Thermogravimetric Analysis
,”
Biomass Bioenergy
,
32
(
11
), pp.
1046
1055
. 10.1016/j.biombioe.2008.02.001
18.
Konist
,
A.
,
Valtsev
,
A.
,
Loo
,
L.
,
Pihu
,
T.
,
Liira
,
M.
, and
Kirsimäe
,
K.
,
2015
, “
Influence of Oxy-Fuel Combustion of Ca-Rich Oil Shale Fuel on Carbonate Stability and Ash Composition
,”
Fuel
,
139
, pp.
671
677
. 10.1016/j.fuel.2014.09.050
19.
Kakaras
,
E.
,
Doukelis
,
A.
,
Giannakopoulos
,
D.
, and
Koumanakos
,
A.
,
2007
, “
Economic Implications of Oxyfuel Application in a Lignite-Fired Power Plant
,”
Fuel
,
86
(
14
), pp.
2151
2158
. 10.1016/j.fuel.2007.03.035
20.
Roy
,
B.
, and
Bhattacharya
,
S.
,
2016
, “
Ash Characteristics During Oxy-Fuel Fluidized Bed Combustion of a Victorian Brown Coal
,”
Powder Technol.
,
288
, pp.
1
5
. 10.1016/j.powtec.2015.10.036
21.
Gur
,
M.
,
Eskin
,
N.
,
Okutan
,
H.
,
Arısoy
,
A.
,
Böke
,
E.
,
Altıntaş
,
U.
,
Büyukşirin
,
A. Y. O.
,
Canbaz
,
E. D.
, and
Yıldırım
,
O.
,
2017
, “
Experimental Results of Underground Coal Gasification of Turkish Lignite in an Ex-Situ Reactor
,”
Fuel
,
203
, pp.
997
1006
. 10.1016/j.fuel.2017.03.008
22.
Karayiğit
,
A. I.
,
Oskay
,
R. G.
,
Tuncer
,
A.
,
Mastalerz
,
M.
,
Gümüş
,
B. A.
,
Şengüler
,
I.
,
Yaradılmış
,
H.
, and
Tunoğlu
,
C.
,
2016
, “
A Multidisciplinary Study of the Golbasi-Harmanlı Coal Seam, SE Turkey
,”
Int. J. Coal. Geol.
,
167
, pp.
31
47
. 10.1016/j.coal.2016.09.005
23.
Erkoyun
,
H.
,
Kadir
,
S.
, and
Huggett
,
J.
,
2019
, “
Occurrence and Genesis of Tonsteins in the Miocene Lignite, Tuncbilek Basin, Kutahya, Western Turkey
,”
Int. J. Coal Geol.
,
202
, pp.
46
68
. 10.1016/j.coal.2018.11.015
24.
Zhang
,
H.
,
Pu
,
W. X.
,
Ha
,
S.
,
Li
,
Y.
, and
Sun
,
M.
,
2009
, “
The Influence of Included Minerals on the Intrinsic Reactivity of Chars Prepared at 900 °C in a Drop Tube Furnace and a Muffle Furnace
,”
Fuel
,
88
(
11
), pp.
2303
2310
. 10.1016/j.fuel.2009.05.014
25.
Caliskan Sarikaya
,
A.
,
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Effects of Pretreatment Outside of Torrefaction Range on Combustion Characteristics of Chars From Lignocellulosic Biomass
,”
J. Thermal Sci. Eng. Appl.
,
11
(
5
), p.
051004
. 10.1115/1.4042589
26.
Kalkreuth
,
W.
,
Lunkes
,
M.
,
Oliveira
,
J.
,
Ghiggi
,
M. L.
,
Osório
,
E.
,
Souza
,
K.
,
Sampaio
,
C. H.
, and
Hidalgo
,
G.
,
2013
, “
The Lower and Upper Coal Seams of the Candiota Coalfield, Brazil-Geological Setting, Petrological and Chemical Characterization, and Studies on Reactivity and Beneficiation Related to Their Combustion Potential
,”
Int. J. Coal Geol.
,
111
, pp.
53
66
. 10.1016/j.coal.2012.09.013
27.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Unburnt Carbon From Oxygen-Enriched Combustion of Low-Quality Fuels at Low Temperatures
,”
ASME J. Energy Res. Technol.
,
141
(
1
), p.
012101
. 10.1115/1.4040792
28.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2008
, “
Combinations of Synergistic Interactions and Additive Behavior During the Co-Oxidation of Chars From Lignite and Biomass
,”
Fuel Process. Technol.
,
89
(
2
), pp.
176
182
. 10.1016/j.fuproc.2007.09.001
29.
Fu
,
P.
,
Hu
,
S.
,
Xiang
,
J.
,
Li
,
P.
,
Huang
,
D.
,
Jiang
,
L.
,
Zhang
,
A.
, and
Zhang
,
J.
,
2010
, “
FTIR Study of Pyrolysis Products Evolving From Typical Agricultural Residues
,”
J. Anal. Appl. Pyrolysis
,
88
(
2
), pp.
117
123
. 10.1016/j.jaap.2010.03.004
30.
El-Hendawy
,
A. N. A.
,
2006
, “
Variation in the FTIR Spectra of a Biomass Under Impregnation, Carbonization and Oxidation Conditions
,”
J. Anal. Appl. Pyrolysis
,
75
(
2
), pp.
159
166
. 10.1016/j.jaap.2005.05.004
31.
Sharma
,
R. K.
,
Wooten
,
J. B.
,
Baliga
,
V. L.
, and
Hajaligol
,
M. R.
,
2001
, “
Characterization of Chars From Biomass-Derived Materials: Pectin Chars
,”
Fuel
,
80
(
12
), pp.
1825
1836
. 10.1016/S0016-2361(01)00066-7
32.
Haykiri-Acma
,
H.
,
Çekiç
,
Y.
, and
Yaman
,
S.
,
2019
, “
Unburnt Carbon and Ashing Behavior for Slow Burning of Lignite Under Oxygen-Enriched Combustion Conditions
,”
Energy Sources Part A
,
41
(
11
), pp.
1326
1335
. 10.1080/15567036.2018.1548511
33.
Wang
,
H.
,
Zheng
,
Z. M.
,
Yang
,
L.
,
Liu
,
X. L.
,
Guo
,
S.
, and
Wu
,
S. H.
,
2015
, “
Experimental Investigation on Ash Deposition of a Bituminous Coal During Oxy-Fuel Combustion in a Bench-Scale Fluidized Bed
,”
Fuel Process. Technol.
,
132
, pp.
24
30
. 10.1016/j.fuproc.2014.12.021
You do not currently have access to this content.