Abstract

Mixed refrigerant (MR) system is commonly used for a liquefaction process of liquid natural gas (LNG) plants due to its higher efficiency of heat transfer rate compared to pure refrigerants. The performance of MR system is highly dependent on the variable refrigerant composition, which is challenging to obtain in a practical LNG plant setting. To address this challenge, this study investigates a unique approach to improve the exergy efficiency of liquefaction cycle employing ammonia in the mixture while keeping the MR molar composition constant in dual mixed refrigerant (DMR) cycle. A control strategy is proposed to regulate the MR flowrate through flow control sensors and a series of Joule-Thomason (JT) valves to sustain the desired efficiency of the cycle under various plant’s operation conditions. The robustness and adaptability of two proposed MR compositions were examined under eight cases by varying natural gas (NG) feed pressure and methane concentration. Composite curve plots were utilized as a tool to control the minimum temperature approach (MTA) and to improve exergy efficiency of the cycle. Furthermore, findings revealed that mixtures which included ammonia yielded a reduction in the number of compressors, as well as a reduced the overall amount of compressors rate of shaft work required for the liquefaction cycle. The results emphasize that DMR is most efficient when NG methane concentration is at 75%. Furthermore, the compressor rate of shaft work reduced by 13.3%, while exergy efficiency of the cycle increased by 14.3%, when natural gas methane concentration reduced from 90% to 75%.

References

1.
Tabkhi
,
F.
,
Pibouleau
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
,
2009
, “
Total Cost Minimization of a High-Pressure Natural Gas Network
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), pp.
1018
1031
. 10.1115/1.4000325
2.
Kumar
,
S.
,
Kwon
,
H. T.
,
Choi
,
K. H.
,
Lim
,
W.
,
Cho
,
J. H.
, and
Tak
,
K.
,
2011
, “
LNG: An Eco-Friendly Cryogenic Fuel for Sustainable Development
,”
Appl. Energy
,
88
(
12
), pp.
4264
4273
. 10.1016/j.apenergy.2011.06.035
3.
Venkatarathnam
,
G.
,
Mokashi
,
G.
, and
Murthy
,
S.
,
1996
, “
Occurrence of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures
,”
Int. J. Refrig.
,
19
(
6
), pp.
361
368
. 10.1016/S0140-7007(96)00023-0
4.
Khan
,
M. S.
,
Lee
,
S.
,
Rangaiah
,
G.
, and
Lee
,
M.
,
2013
, “
Knowledge Based Decision Making Method for the Selection of Mixed Refrigerant Systems for Energy Efficient LNG Processes
,”
Appl. Energy
,
111
, pp.
1018
1031
. 10.1016/j.apenergy.2013.06.010
5.
Cheng
,
W.
, and
Mah
,
R.
,
1980
, “
Interactive Synthesis of Cascade Refrigeration Systems
,”
Ind. Eng. Chem. Process Des. Dev.
,
19
(
3
), pp.
410
420
. 10.1021/i260075a015
6.
Lakshmi Narasimhan
,
N.
, and
Venkatarathnam
,
G.
,
2010
, “
A Method for Estimating the Composition of the Mixture to be Charged to Get the Desired Composition in Circulation in a Single Stage JT Refrigerator Operating With Mixtures
,”
Cryogenics
,
50
(
2
), pp.
93
101
. 10.1016/j.cryogenics.2009.12.004
7.
Xu
,
X.
,
Liu
,
J.
,
Jiang
,
C.
, and
Cao
,
L.
,
2013
, “
The Correlation Between Mixed Refrigerant Composition and Ambient Conditions in the PRICO LNG Process
,”
Appl. Energy
,
102
, pp.
1127
1136
. 10.1016/j.apenergy.2012.06.031
8.
Brown
,
L. E.
,
Romine
,
L. M.
, and
Zinn
,
C. D.
,
1983
, “
LNG Facility Risk Assessment
,”
ASME J. Energy Resour. Technol.
,
105
(
1
), pp.
103
107
. 10.1115/1.3230866
9.
Venkatarathnam
,
G.
,
1980
,
Cryogenic Mixed Refrigerant Processes
,
Springer-Verlag
,
New York
.
10.
Cao
,
W.
,
Lu
,
X.
,
Lin
,
W.
, and
Gu
,
A.
,
2006
, “
Parameter Comparison of Two Small-Scale Natural Gas Liquefaction Processes in Skid-Mounted Packages
,”
Appl. Therm. Eng.
,
26
(
8–9
), pp.
898
904
. 10.1016/j.applthermaleng.2005.09.014
11.
Ait-Ali
,
M. A.
,
1979
, “
Optimal Mixed Refrigerant Liquefaction of Natural Gas
,”
Ph.D. thesis
,
Mechanical Engineering Department, Stanford University
,
Stanford, CA
.
12.
Duvedi
,
A.
, and
Achenie
,
L.
,
1997
, “
On the Design of Environmentally Benign Refrigerant Mixtures: A Mathematical Programming Approach
,”
Comput. Chem. Eng.
,
21
(
8
), pp.
915
923
. 10.1016/S0098-1354(96)00310-9
13.
Lee
,
G.
,
Smith
,
R.
, and
Zhu
,
X.
,
2002
, “
Optimal Synthesis of Mixed-Refrigerant Systems for Low-Temperature Processes
,”
Ind. Eng. Chem. Res.
,
41
(
20
), pp.
5016
5028
. 10.1021/ie020057p
14.
Hasan
,
M. M. F.
,
Karimi
,
I. A.
, and
Alfadala
,
H. E.
,
2002
, “
Optimizing Compressor Operations in an LNG Plant
,”
Proceedings of the 1st Annual Gas Processing Symposium
,
H.
Alfadala
,
G. V. R.
Reklaitis
, and
M. M.
El-Halwagi
, eds.,
Elsevier
,
Amsterdam
.
15.
Qyyum
,
M. A.
,
Ali
,
W.
,
Long
,
N. V.
,
Khan
,
M. S.
, and
Moonyong
,
L.
,
2018
, “
Energy Efficiency Enhancement of a Single Mixed Refrigerant LNG Process Using a Novel Hydraulic Turbine
,”
Energy
,
144
, pp.
968
976
. 10.1016/j.energy.2017.12.084
16.
Sun
,
Z.
,
Lai
,
J.
,
Wang
,
S.
, and
Wang
,
T.
,
2018
, “
Thermodynamic Optimization and Comparative Study of Different ORC Configurations Utilizing the Exergies of LNG and Low Grade Heat of Different Temperatures
,”
Energy
,
147
, pp.
688
700
. 10.1016/j.energy.2018.01.085
17.
Brodyanskii
,
V. M.
,
Gramov
,
E. A.
,
Grezin
,
A. K.
,
Yagodin
,
V. M.
,
Nikol’skii
,
V. A.
, and
Tashchina
,
A. G.
,
2002
, “
Efficient Throttling Cryogenic Refrigerators Which Operate on Mixtures
,”
Chem. Pet. Eng.
,
8
(
12
), pp.
1057
1061
. 10.1007/BF01138079
18.
Wood
,
D.
,
Mokhatab
,
S.
, and
Economides
,
M.
,
2007
, “
Offshore Natural Gas Liquefaction Process and Development Issues
,”
SPE Proj. Facil. Constr.
,
2
(
4
), pp.
1
7
. 10.2118/109522-PA
19.
Linnhoff
,
B.
, and
Flower
,
J.
,
1978
, “
Synthesis of Heat Exchanger Networks: I. Systematic Generation of Energy Optimal Networks
,”
AIChE J.
,
24
(
4
), pp.
633
642
. 10.1002/aic.690240411
20.
Venkatarathnam
,
G.
, and
Srinivasa Murthy
,
S.
,
1999
, “
Effect of Mixture Composition on the Formation of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures
,”
Int. J. Refrig.
,
22
(
3
), pp.
205
215
. 10.1016/S0140-7007(98)00056-5
21.
Song
,
C.
,
Tan
,
S.
,
Qu
,
F.
,
Liu
,
W.
, and
Wu
,
Y.
,
2019
, “
Optimization of Mixed Refrigerant System for LNG Processes Through Graphically Reducing Exergy Destruction of Cryogenic Heat Exchangers
,”
Energy
,
168
, pp.
200
206
. 10.1016/j.energy.2018.11.105
22.
Lee
,
G.-C.
,
2001
, “
Optimal Design and Analysis of Refrigeration Systems for Low Temperature Processes
,”
Ph.D. thesis
,
School of Chemical Engineering and Analytical Science, The University of Manchester, UMIST
,
Manchester, UK
.
23.
Khan
,
N. B.
,
Barifcani
,
A.
,
Tade
,
M.
, and
Pareek
,
V.
,
2002
, “
A Case Study: Application of Energy and Exergy Analysis for Enhancing the Process Efficiency of a Three Stage Propane Pre-Cooling Cycle of the Cascade LNG Process
,”
J. Nat. Gas Sci. Eng.
,
29
, pp.
125
133
. 10.1016/j.jngse.2015.12.034
24.
Xu
,
X.
,
Liu
,
J.
,
Cao
,
L.
, and
Pang
,
W.
,
2014
, “
Automatically Varying the Composition of a Mixed Refrigerant Solution for Single Mixed Refrigerant LNG (Liquefied Natural Gas) Process at Changing Working Conditions
,”
Energy
,
64
, pp.
931
941
. 10.1016/j.energy.2013.10.040
25.
Remeljej
,
C.
, and
Hoadley
,
A.
,
2006
, “
An Exergy Analysis of Small-Scale Liquefied Natural Gas (LNG) Liquefaction Processes
,”
Energy
,
31
(
12
), pp.
2005
2019
. 10.1016/j.energy.2005.09.005
26.
Reference Fluid Thermodynamic and Transport Properties
,
2018
,
REFPROP Version 10.0
,
NIST
,
Gaithersburg, MD
.
You do not currently have access to this content.