Abstract

Self-healing is a promising way to solve the difficulty in wind turbine blades repair, yet the embedded healing agent may have a disadvantage because of being exposed to outdoor for a long time. Pressurized delivery of the healing agent in real-time when the blade is damaged may be the solution to avoid the disadvantage healing agent. In this paper, the healing agent was pumped to the damaged area by a peristaltic pump, and the healing effect was evaluated by the recovery rate of the residual flexural strength after impact and the image of ultrasonic C-scan. To evaluate the healing effect of different damage degrees, 10 J, 15 J, 20 J, and 25 J impact energies were applied. The fluid tracer test showed that the healing agent could penetrate in the damaged areas after the impact of 15 J, 20 J and 25 J, while the three-point bending test revealed that the healing efficiency was the highest with 20 J (85.2%). The ultrasonic C-scan and optical photos of the sample showed that the images of the healing area were almost consistent with those of the un-impacted area, indicating that the damaged area is healed well. Based on the success of plate samples, the self-healing of the wind turbine blade-scale prototype was then carried out. Twenty-joule impact was exerted on the blade prototype, and the healing agent was pumped to the damaged area using the peristaltic pump similar to the same procedure as that of the plate specimen. Ultrasonic C-scan and optical images of the damaged area showed that the prototype was healed well in comparison with those of the plate specimens, indicating that the application of pressurized delivery of the healing agent system in the self-healing of wind turbine blade prototype was successful.

References

1.
Chou
,
J.-S.
,
Chiu
,
C.-K.
,
Huang
,
I.-K.
, and
Chi
,
K.-N.
,
2013
, “
Failure Analysis of Wind Turbine Blade Under Critical Wind Loads
,”
Eng. Fail. Anal.
,
27
, pp.
99
118
. 10.1016/j.engfailanal.2012.08.002
2.
Lee
,
M. W.
,
An
,
S.
,
Yoon
,
S. S.
, and
Yarin
,
A. L.
,
2018
, “
Advances in Self-Healing Materials Based on Vascular Networks With Mechanical Self-Healing Characteristics
,”
Adv. Colloid Interface Sci.
,
252
, pp.
21
37
. 10.1016/j.cis.2017.12.010
3.
Wu
,
X.-F.
,
Rahman
,
A.
,
Zhou
,
Z.
,
Pelot
,
D. D.
,
Sinha-Ray
,
S.
,
Chen
,
B.
,
Payne
,
S.
, and
Yarin
,
A. L.
,
2013
, “
Electrospinning Core-Shell Nanofibers for Interfacial Toughening and Self-Healing of Carbon-Fiber/Epoxy Composites
,”
J. Appl. Polym. Sci.
,
129
(
3
), pp.
1383
1393
. 10.1002/app.38838
4.
Saeed
,
M. U.
,
Chen
,
Z. F.
, and
Li
,
B. B.
,
2015
, “
Manufacturing Strategies for Microvascular Polymeric Composites: A Review
,”
Composites, Part A
,
78
, pp.
327
340
. 10.1016/j.compositesa.2015.08.028
5.
Saeed
,
M. U.
,
Li
,
B.
,
Chen
,
Z.
, and
Cui
,
S.
,
2016
, “
Fabrication of Micro Channeled Composites by Novel Selective Polymer Degradation
,”
Mater. Manuf. Processes
,
31
(
15
), pp.
2057
2063
. 10.1080/10426914.2016.1198016
6.
Yang
,
T.
,
Wang
,
C. H.
,
Zhang
,
J.
,
He
,
S.
, and
Mouritz
,
A. P.
,
2012
, “
Toughening and Self-Healing of Epoxy Matrix Laminates Using Mendable Polymer Stitching
,”
Compos. Sci. Technol.
,
72
(
12
), pp.
1396
1401
. 10.1016/j.compscitech.2012.05.012
7.
Yang
,
T.
,
Du
,
Y.
,
Li
,
Z. M.
, and
Wang
,
C. H.
,
2014
, “
Mechanical Properties of Self-Healing Carbon Fiber-Epoxy Composite Stitched With Mendable Polymer Fiber
,”
Polym. Polym. Compos.
,
22
(
3
), pp.
329
336
. 10.1177/096739111402200316
8.
Li
,
P.
,
Liu
,
Y.
,
Zou
,
T.
, and
Huang
,
J.
,
2017
, “
Optimal Design of Microvascular Networks Based on Non-Dominated Sorting Genetic Algorithm ii and Fluid Simulation
,”
Adv. Mech. Eng.
,
9
(
7
), pp.
1
9
. 10.1177%2F1687814017708175
9.
Hart
,
K. R.
,
Lankford
,
S. M.
,
Freund
,
I. A.
,
Patrick
,
J. F.
,
Krull
,
B. P.
,
Wetzel
,
E. D.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2017
, “
Repeated Healing of Delamination Damage in Vascular Composites by Pressurized Delivery of Reactive Agents
,”
Compos. Sci. Technol.
,
151
, pp.
1
9
. 10.1016/j.compscitech.2017.07.027
10.
Hamilton
,
A. R.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2012
, “
Pressurized Vascular Systems for Self-Healing Materials
,”
J. R. Soc., Interface
,
9
(
70
), pp.
1020
1028
. 10.1098/rsif.2011.0508
11.
Norris
,
C. J.
,
Meadway
,
G. J.
,
O'Sullivan
,
M. J.
,
Bond
,
I. P.
, and
Trask
,
R. S.
,
2011
, “
Self-Healing Fibre Reinforced Composites via a Bioinspired Vasculature
,”
Adv. Funct. Mater.
,
21
(
19
), pp.
3624
3633
. 10.1002/adfm.201101100
12.
Williams
,
G. J.
,
Bond
,
I. P.
, and
Trask
,
R. S.
,
2009
, “
Compression After Impact Assessment of Self-Healing CFRP
,”
Composites, Part A
,
40
(
9
), pp.
1399
1406
. 10.1016/j.compositesa.2008.05.021
13.
Trask
,
R. S.
,
Norris
,
C. J.
, and
Bond
,
I. P.
,
2014
, “
Stimuli-Triggered Self-Healing Functionality in Advanced Fiber-Reinforced Composites
,”
J. Intell. Mater. Syst. Struct.
,
25
(
1
), pp.
87
97
. 10.1177/1045389X13505006
14.
Minakuchi
,
S.
,
Sun
,
D.
, and
Takeda
,
N.
,
2014
, “
Hierarchical System for Autonomous Sensing-Healing of Delamination in Large-Scale Composite Structures
,”
Smart Mater. Struct.
,
23
(
11
), p.
115014
. 10.1088/0964-1726/23/11/115014
15.
Kling
,
S.
, and
Czigány
,
T.
,
2014
, “
Damage Detection and Self-Healing in Hollow Glass Fiber Fabric-Reinforced Epoxy Composites via Fiber Filling
,”
Compos. Sci. Technol.
,
99
, pp.
82
88
. 10.1016/j.compscitech.2014.05.020
16.
Pang
,
J. W. C.
, and
Bond
,
I. P.
,
2005
, “
‘Bleeding Composites’—Damage Detection and Self-Healing Using a Biomimetic Approach
,”
Composites, Part A
,
36
(
2
), pp.
183
188
. 10.1016/S1359-835X(04)00166-6
17.
Matt
,
A. K. K.
,
Beyhaghi
,
S.
,
Amano
,
R. S.
, and
Guo
,
J.
,
2017
, “
Self-Healing of Wind Turbine Blades Using Microscale Vascular Vessels
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051208
. 10.1115/1.4036052
18.
Shen
,
R.
,
Amano
,
R. S.
,
Lewinski
,
G.
, and
Matt
,
A. K. K.
,
2019
, “
A New Vascular System Highly Efficient in the Storage and Transport of Healing Agent for Self-Healing Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051212
. 10.1115/1.4042916
19.
Shen
,
R.
,
Amano
,
R. S.
, and
Lewinski
,
G.
,
2019
, “
Self-Healing Performance Comparison Between Two Promising Vascular Vessel Systems of Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111203
. 10.1115/1.4043655
You do not currently have access to this content.