Abstract

Remarkable progress has been achieved in measuring the flame propagation rate accurately under laminar conditions, which can be used to predict turbulent flame propagation rates using some correlations fitted to experimental data. However, such propagation rates, unlike the laminar case, cannot be unambiguously determined. Nevertheless, the advancement of laser imaging techniques has led to several definitions of turbulent burning rates (Roshan et al., 2010, “Simulation of Global Warming Effect on Outdoor Thermal Comfort Conditions,” Int. J. Environ. Sci. Technol., 7(3), pp. 571–580). Recently, a unified scaling factor has been successfully demonstrated using data gathered from several fan-stirred bombs. Such results are promising in compiling a comprehensive database of turbulent propagation rates for potential and common fuels of interest to internal combustion engines (ICEs) and gas turbines alike. The strict worldwide legislation to reduce emissions has forced many industries to look into alternative fuels with less emissions. One such alternative fuel that has gained much interest recently is the gas-to-liquid (GTL) fuel, which is being used in blended forms in several combustion applications. However, detailed combustion characteristic investigations are required before using this new alternative fuel widely in engines (Business, 2018, “Qatar’s Exporters Directory 2018”). In this study, the significant issues associated with the use of fan-stirred bombs are investigated. First, the effect of varying fan speed and geometry is reviewed, and then, the measurement techniques that are commonly used to track flame propagation are discussed. This is followed by the study of the effect of using different types of fuels on combustion characteristics. Furthermore, the use of diesel and gasoline optical engine setups as advanced flame visualization tools have been reviewed extensively.

References

1.
Samim
,
S.
,
2016
, “
Investigation of Laminar Flame Speed of Alternative Liquid Fuel Blends
,”
Master's Thesis
,
Qatar University
,
Doha, Qatar
. http://hdl.handle.net/10576/5075.
2.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
. https://doi.org/10.1115/1.4041412
3.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
. 10.1115/1.4028363
4.
Samim
,
S.
,
Sadeq
,
A. M.
, and
Ahmed
,
S. F.
,
2016
, “
Measurements of Laminar Flame Speeds of Gas-to-Liquid-Diesel Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052213
. 10.1115/1.4033627
5.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
. 10.1115/1.4042411
6.
Bradley
,
D.
,
Haq
,
M. Z.
,
Hicks
,
R. A.
,
Kitagawa
,
T.
,
Lawes
,
M.
,
Sheppard
,
C. G.
, and
Woolley
,
R.
,
2003
, “
Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition
,”
Combust. Flame
,
133
(
4
), pp.
415
430
. 10.1016/S0010-2180(03)00039-7
7.
Zhang
,
G.
,
Li
,
G.
,
Li
,
H.
, and
Jiang
,
Y.
,
2019
, “
ScienceDirect Experimental Investigation on the Self-Acceleration of 10% H 2/90% CO/Air Turbulent Expanding Premixed Flame
,”
Int. J. Hydrogen Energy
,
44
(
44
), pp.
24321
24330
. 10.1016/j.ijhydene.2019.07.154
8.
Chakraborty
,
N.
,
2014
, “
Modeling of Entropy Generation in Turbulent Premixed Flames for Reynolds Averaged Navier–Stokes Simulations: A Direct Numerical Simulation Analysis
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032201
. 10.1115/1.4028693
9.
Roshan
,
G. R.
,
Ranjbar
,
F.
, and
Orosa
,
J. A.
,
2010
, “
Simulation of Global Warming Effect on Outdoor Thermal Comfort Conditions
,”
Int. J. Environ. Sci. Technol.
,
7
(
3
), pp.
571
580
. 10.1007/BF03326166
10.
QDB
,
2018
, “
Report: Qatar’s Exporters Directory 2018
”. https://www.qdb.qa/en/Documents/QDB_Tasdeer_Exporter-2018-English.pdf.
11.
Semenov
,
E. S.
,
1966
, “
Measurement of Turbulence Characteristics in a Closed Volume With Artificial Turbulence
,”
Combust. Explos. Shock Waves
,
1
(
2
), pp.
57
62
. 10.1007/BF00757231
12.
Ehn
,
A.
,
Zhu
,
J.
,
Li
,
X.
, and
Kiefer
,
J.
,
2017
, “
Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering
,”
Appl. Spectrosc.
,
71
(
3
), pp.
341
366
. 10.1177/0003702817690161
13.
Huang
,
Y.
,
2008
, “
Combustion Dynamics of Swirl-Stabilized Lean Premixed Flames in an Acoustically-Driven Environment
,”
Ph.D. (Doctor of Philosophy) thesis
,
University of Iowa
.
14.
Bradley
,
D.
,
Lawes
,
M.
, and
Mansour
,
M. S.
,
2011
, “
The Problems of the Turbulent Burning Velocity
,”
Flow Turbul. Combust.
,
87
(
2–3
), pp.
191
204
. 10.1007/s10494-011-9339-y
15.
Brutscher
,
T.
,
Zarzalis
,
N.
, and
Bockhorn
,
H.
,
2002
, “
An Experimentally Based Approach for the Space-Averaged Laminar Burning Velocity Used for Modeling Premixed Turbulent Combustion
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1825
1832
. 10.1016/S1540-7489(02)80221-8
16.
Zhen
,
G.
, and
Leuckel
,
W.
,
1997
, “
Effects of Ignitors and Turbulence on Dust Explosions
,”
J. Loss Prev. Process Ind.
,
10
(
5–6
), pp.
317
324
. 10.1016/S0950-4230(97)00021-1
17.
Leisenheimer
,
B.
, and
Leukel
,
W.
,
2007
, “
Self-Generated Acceleration of Confined Deflagrative Flame Fronts
,”
Combust. Sci. Technol.
,
118
(
1–3
), pp.
147
164
.
18.
Weiß
,
M.
,
Zarzalis
,
N.
, and
Suntz
,
R.
,
2008
, “
Experimental Study of Markstein Number Effects on Laminar Flamelet Velocity in Turbulent Premixed Flames
,”
Combust. Flame
,
154
(
4
), pp.
671
691
. 10.1016/j.combustflame.2008.06.011
19.
Birouk
,
M.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2003
, “
An Attempt to Realize Experimental Isotropic Turbulence at Low Reynolds Number
,”
Flow Turbul. Combust.
,
70
(
1–4
), pp.
325
348
. 10.1023/B:APPL.0000004974.74706.6d
20.
Hwang
,
W.
, and
Eaton
,
J. K.
,
2004
, “
Creating Homogeneous and Isotropic Turbulence Without a Mean Flow
,”
Exp Fluids.
,
36
(
3
), pp.
444
454
. 10.1007/s00348-003-0742-6
21.
Sheikhi
,
M. R. H.
,
Safari
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Large Eddy Simulation for Local Entropy Generation Analysis of Turbulent Flows
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041603
.
22.
Kwon
,
S.
,
Wu
,
M. S.
,
Driscoll
,
J. F.
, and
Faeth
,
G. M.
,
1992
, “
Flame Surface Properties of Premixed Flames in Isotropic Turbulence: Measurements and Numerical Simulations
,”
Combust. Flame
,
88
(
2
), pp.
221
238
. 10.1016/0010-2180(92)90053-R
23.
Fansler
,
T. D.
, and
Groff
,
E. G.
,
1990
, “
Turbulence Characteristics of a fan-Stirred Combustion Vessel
,”
Combust. Flame
,
80
(
3–4
), pp.
350
354
. 10.1016/0010-2180(90)90110-D
24.
Shy
,
S. S.
,
I
,
W. K.
, and
Lin
,
M. L.
,
2000
, “
A New Cruciform Burner and Its Turbulence Measurements for Premixed Turbulent Combustion Study
,”
Exp. Therm. Fluid Sci.
,
20
(
3–4
), pp.
105
114
. 10.1016/S0894-1777(99)00035-7
25.
Liu
,
C.
,
2015
,
Self-Contradictions in Current Turbulence Theory
,
Technical Report 2015-06
.
University of Texas at Arlington
,
Arlington
.
26.
Ravi
,
S.
,
2014
,
Measurement of Turbulent Flame Speeds of Hydrogen and Natural Gas Blends (C1-C5 Alkanes) using a Newly Developed Fan-Stirred Vessel
,
Doctoral dissertation
,
Texas A & M University
. http://hdl.handle.net/1969.1/152731.
27.
Vancoillie
,
J.
,
Sharpe
,
G.
, and
Lawes
,
M.
,
2014
, “
The Turbulent Burning Velocity of Methanol-Air Mixtures
,”
Fuel
,
130
, pp.
76
91
. 10.1016/j.fuel.2014.04.003
28.
Ayache
,
A.
, and
Birouk
,
M.
,
2018
, “
Experimental Study of Turbulent Burning Velocity of Premixed Biogas Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032202
. 10.1115/1.4041095
29.
Lewis
,
B.
, and
Von Elbe
,
G.
,
1951
,
Combustion Flames and Explosion of Gases
,
Academic Press
,
New York
.
30.
Al Omari
,
S. A. B.
,
Hamdan
,
M. O.
,
Ye
,
M.
, and
Elnajjar
,
E.
,
2019
, “
Combustion of Jojoba-oil/Diesel Blends in a Small Scale Furnace
,”
Renew. Energy
,
131
, pp.
678
688
. 10.1016/j.renene.2018.07.009
31.
Morones
,
A.
,
Ravi
,
S.
,
Plichta
,
D.
,
Petersen
,
E. L.
,
Donohoe
,
N.
,
Heufer
,
A.
,
Curran
,
H. J.
,
Güthe
,
F.
, and
Wind
,
T.
,
2014
, “
Laminar and Turbulent Flame Speeds for Natural Gas/Hydrogen Blends
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions
.
Düsseldorf, Germany
,
June 16–20
, p.
V04BT04A039
.
ASME
. https://doi.org/10.1115/GT2014-26742.
32.
El-Adawy
,
M.
,
Heikal
,
M. R.
, and
Aziz
,
A. R. A.
,
2018
, “
Stereoscopic Particle Image Velocimetry Measurements and Proper Orthogonal Decomposition Analysis of the In-Cylinder Flow of Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042204
. 10.1115/1.4042068
33.
Settles
,
G. S.
, and
Hargather
,
M. J.
,
2017
, “
A Review of Recent Developments in Schlieren and Shadowgraph Techniques
,”
Meas. Sci. Technol.
,
28
(
4
), p.
42001
. 1
34.
Harker
,
M. R.
,
Hattrell
,
T.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Tripathi
,
N.
,
2012
, “
Measurements of the Three-Dimensional Structure of Flames at Low Turbulence
,”
Combust. Sci. Technol.
,
184
(
10–11
), pp.
1818
1837
. 10.1080/00102202.2012.691775
35.
Hara
,
T.
, and
Tanoue
,
K.
,
2006
, “
Laminar Flame Speeds of Ethanol, n-Heptane, Iso-Octane Air Mixtures
,”
FISITA 2006 Student Congr.
,
19
(
2–3
), pp.
181
186
.
36.
Brequigny
,
P.
,
Endouard
,
C.
,
Mounaïm-rousselle
,
C.
, and
Foucher
,
F.
,
2018
, “
An Experimental Study on Turbulent Premixed Expanding Flames Using Simultaneously Schlieren and Tomography Techniques
,”
Exp. Therm. Fluid Sci.
,
95
, pp.
11
17
. 10.1016/j.expthermflusci.2017.12.018
37.
Galmiche
,
B.
,
Mazellier
,
N.
,
Halter
,
F.
, and
Foucher
,
F.
,
2014
, “
Turbulence Characterization of a High-Pressure High-Temperature Fan-Stirred Combustion Vessel Using LDV, PIV and TR-PIV Measurements
,”.
Exp. Fluids
,
55
, p.
1636
. https://doi.org/10.1007/s00348-013-1636-x
38.
Nathan
,
H.
, and
Richard
,
S.
,
2014
, “
Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) over Wide Ranging Temperatures and Pressures
,”
Fuel
,
116
, pp.
743
750
.
39.
Morones Ruelas
,
A.
,
2015
, “
Turbulence Measurements in a Fan-Stirred Flame Bomb Using Laser Doppler Velocimetry
,”
Master's thesis
,
Texas A & M University
. http://hdl.handle.net/1969.1/155689.
40.
Yi
,
W.
,
2016
, “
Experimental Investigation of Laminar Flame Speeds of Kerosene Fuel and Second Generation Biofuels in Elevated Conditions of Pressure and Preheat Temperature
,”
Chemical Physics [physics.chem-ph]. INSA de Rouen, 2016. English. ⟨NNT : 2016ISAM0011⟩
.
41.
Awakem
,
D.
,
Obounou
,
M.
, and
Noume
,
H. C.
,
2018
, “
Application of the Computational Singular Perturbation Method to a Turbulent Diffusion CH4/H2/N2 Flame Using OpenFOAM
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042201
. 10.1115/1.4041841
42.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2019
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.10.1115/1.4041289
43.
Gomez Casanova
,
C. A.
,
2016
, “
Experimental Measurement of Laminar Flame Speed of a Novel Liquid Biofuel 1,3 Dimethoxyoctane
,”
M.S. Thesis
,
University of Manitoba
,
Winnipeg, MB, Canada
.
44.
Kido
,
H.
,
Nakahara
,
M.
,
Nakashima
,
K.
, and
Hashimoto
,
J. U. N.
,
2002
, “
Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1855
1861
. 10.1016/S1540-7489(02)80225-5
45.
Bouvet
,
N.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Halter
,
F.
,
2011
, “
Experimental Studies of the Fundamental Flame Speeds of Syngas (H 2/CO)/air Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
913
920
. 10.1016/j.proci.2010.05.088
46.
Michel
,
R.
,
Rapagnà
,
S.
,
Di Marcello
,
M.
,
Burg
,
P.
,
Matt
,
M.
,
Courson
,
C.
, and
Gruber
,
R.
,
2011
, “
Catalytic Steam Gasification of Miscanthus X Giganteus in Fluidised Bed Reactor on Olivine Based Catalysts
,”
Fuel Process. Technol.
,
92
(
6
), pp.
1169
1177
. 10.1016/j.fuproc.2010.12.005
47.
Pang
,
G. A.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2009
, “
Experimental Study and Modeling of Shock Tube Ignition Delay Times for Hydrogen-Oxygen-Argon Mixtures at Low Temperatures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
181
188
. 10.1016/j.proci.2008.06.014
48.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
. 10.1016/j.combustflame.2007.05.003
49.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1283
1292
. 10.1016/j.proci.2004.08.252
50.
Wang
,
B. L.
,
Olivier
,
H.
, and
Grönig
,
H.
,
2003
, “
Ignition of Shock-Heated H 2-Air-Steam Mixtures
,”
Combust. Flame
,
133
(
1–2
), pp.
93
106
. 10.1016/S0010-2180(02)00552-7
51.
Higman
,
C.
,
2008
,
Combustion Engineering Issues for Solid Fuel Systems
,
Academic Press
, pp.
423
468
. 10.1016/B978-0-12-373611-6.00011-2
52.
Lee
,
H. C.
,
Jiang
,
L. Y.
, and
Mohamad
,
A. A.
,
2014
, “
A Review on the Laminar Flame Speed and Ignition Delay Time of Syngas Mixtures
,”
Int. J. Hydrogen Energy
,
39
(
2
), pp.
1105
1121
. 10.1016/j.ijhydene.2013.10.068
53.
Sajjad
,
H.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Arbab
,
M. I.
,
Imtenan
,
S.
, and
Rahman
,
S. A.
,
2014
, “
Engine Combustion, Performance and Emission Characteristics of Gas to Liquid (GTL) Fuels and Its Blends With Diesel and Bio-Diesel
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
961
986
. 10.1016/j.rser.2013.11.039
54.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Agarwal
,
A.
,
2016
, “
Evolution, Trends and Applications of Endoscopy in Internal Combustion Engines
,”
J. Energy Environ. Sustainability
,
1
, pp.
56
66
.
55.
Kalghatgi
,
G.
,
2019
, “
Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport
,”
Engineering
,
5
(
3
), pp.
510
518
. 10.1016/j.eng.2019.01.009
56.
Connor
,
J. O.
, and
Musculus
,
M.
,
2013
, “
Of Engine Research Combustion Phasing
”.
57.
Bevan
,
J.
,
Russell
,
B.
, and
Marshall
,
B.
, “
A New Approach to OSCE Preparation—PrOSCEs
,”
BMC Med. Educ.
,
19
(
1
), p.
126
. 10.1186/s12909-019-1571-5
58.
Perini
,
F.
,
Zha
,
K.
,
Busch
,
S.
,
Kurtz
,
E.
,
Peterson
,
R. C.
,
Warey
,
A.
, and
Reitz
,
R.
D.
,
2018
, “
Piston Geometry Effects in a Light-Duty, Swirl-Supported Diesel Engine: Flow Structure Characterization
”,
Int. J. Eng. Res.
,
19
(
10
), pp.
1079
1098
. http://dx.doi.org/10.1177/1468087417742572
59.
Winklhofer
,
E.
, and
Hopfner
,
W.
,
2013
, “
Optical Single Cylinder Engines in Engine Research and Development
,”
Combust. Eng.
,
1
(
152
), pp.
71
78
.
60.
Yin
,
C.
,
Zhang
,
Z.
,
Sun
,
Y.
,
Sun
,
T.
, and
Zhang
,
R.
,
2016
, “
Effect of the Piston Top Contour on the Tumble Flow and Combustion Features of a GDI Engine With a CMCV : A CFD Study
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
311
329
. 10.1080/19942060.2016.1157099
61.
Koszalka
,
G.
, and
Suchecki
,
A.
,
2017
, “
Analysis of Design Parameters of Pistons and Piston Rings of a Combustion Engine
,”
MATEC Web Conf.
,
118
, p.
00013
. 10.1051/matecconf/201711800013
62.
Zhang
,
X.
,
2012
, “
Power Control of Diesel Engine-Generator Set Subject to Emission Constraints
,”
Electronic Theses and Dissertations, 5357
.
63.
Ahmad
,
Z.
,
Kaario
,
O.
,
Qiang
,
C.
,
Vuorinen
,
V.
, and
Larmi
,
M.
,
2019
, “
A Parametric Investigation of Diesel/Methane Dual-Fuel Combustion Progression/Stages in a Heavy-Duty Optical Engine
,”
Appl. Energy
,
251
, pp.
113191
. 10.1016/j.apenergy.2019.04.187
64.
Han
,
S.
,
Hyun
,
S.
, and
Sik
,
C.
,
2014
, “
Bioethanol and Gasoline Premixing Effect on Combustion and Emission Characteristics in Biodiesel Dual-Fuel Combustion Engine
,”
Appl. Energy
,
135
, pp.
286
298
. 10.1016/j.apenergy.2014.08.056
65.
Shim
,
E.
,
Park
,
H.
, and
Bae
,
C.
,
2018
, “
Intake Air Strategy for Low HC and CO Emissions in Dual-Fuel (CNG-Diesel) Premixed Charge Compression Ignition Engine
,”
Appl. Energy
,
225
, pp.
1068
1077
. 10.1016/j.apenergy.2018.05.060
66.
Liu
,
J.
,
Yang
,
F.
,
Wang
,
H.
,
Ouyang
,
M.
, and
Hao
,
S.
,
2013
, “
Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine With Optimized Pilot Injection Timing
,”
Appl. Energy
,
110
, pp.
201
206
. 10.1016/j.apenergy.2013.03.024
67.
Cheng
,
Q.
,
Ahmad
,
Z.
,
Kaario
,
O.
, and
Martti
,
L.
,
2019
, “
Cycle-to-Cycle Variations of Dual-Fuel Combustion in an Optically Accessible Engine
,”
Appl. Energy
,
254
, p.
113611
. 10.1016/j.apenergy.2019.113611
68.
Lee
,
S.
,
Yoon
,
S.
,
Kwon
,
H.
,
Lee
,
J.
, and
Park
,
S.
,
2019
, “
Effects of Engine Operating Conditions on Flame Propagation Processes in a Compression Ignition Optical Engine
,”
Appl. Energy
,
254
, p.
113642
. 10.1016/j.apenergy.2019.113642
69.
Pastor
,
J. V.
,
Olmeda
,
P.
,
Mart
,
J.
, and
Lewiski
,
F.
,
2018
, “
Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques
,”
Appl. Sci.
,
12
, pp.
1
17
. https://doi.org/10.3390/app8122571
70.
Karim
,
G. A.
,
2015
,
Dual-fuel diesel engines
,
Taylor & Francis
.
71.
Mustafi
,
N. N.
,
Raine
,
R. R.
, and
Verhelst
,
S.
,
2013
, “
Combustion and Emissions Characteristics of a Dual Fuel Engine Operated on Alternative Gaseous Fuels
,”
Fuel
,
109
, pp.
669
678
. 10.1016/j.fuel.2013.03.007
72.
Li
,
W.
,
Liu
,
Z.
, and
Wang
,
Z.
,
2016
, “
Experimental and Theoretical Analysis of the Combustion Process at low Loads of a Diesel Natural Gas Dual-Fuel Engine
,”
Energy
,
94
, pp.
728
741
. 10.1016/j.energy.2015.11.052
73.
Lee
,
J.
,
Chu
,
S.
,
Min
,
K.
,
Kim
,
M.
,
Jung
,
H.
, and
Kim
,
H.
,
2017
, “
Classification of Diesel and Gasoline Dual-Fuel Combustion Modes by the Analysis of Heat Release Rate Shapes in a Compression Ignition Engine
,”
Fuel
,
209
(
1 December 2017
), pp.
587
597
. 10.1016/j.fuel.2017.07.067
74.
Muhammad
,
A.
,
Gulzar
,
A.
, and
Javaid
,
M. N.
,
2017
, “
Empirical Asessment of Climate Change on Agricultural Crops: Panel Data Analysis in Pakistan
,”
Int. J. Food Agric. Econ.
,
5
(
2
), pp.
59
68
.
75.
Shiao
,
Y.
, and
Moskwa
,
J. J.
,
1995
, “
Cylinder Pressure and Combustion Heat Release Estimation for SI Engine Diagnostics Using Nonlinear Sliding Observers
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
70
78
. 10.1109/87.370712
76.
Liu
,
Z.
, and
Karim
,
G. A.
,
1998
, “
An Examination of the Ignition Delay Period in Gas-Fueled Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
225
231
. https://doi.org/10.1115/1.2818080
77.
Wang
,
Q.
,
Yao
,
C.
,
Dou
,
Z.
,
Wang
,
B.
, and
Wu
,
T.
,
2015
, “
“Effect of Intake Pre-Heating and Injection Timing on Combustion and Emission Characteristics of a Methanol Fumigated Diesel Engine at Part Load
,”
Fuel
,
159
, pp.
796
802
. 10.1016/j.fuel.2015.07.032
78.
Dronniou
,
N.
,
Kashdan
,
J.
,
Lecointe
,
B.
,
Sauve
,
K.
, and
Soleri
,
D.
,
2014
, “
Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions
,”
SAE International Journal of Engines
,
7
(
2
), pp.
873
887
. www.jstor.org/stable/26277807
79.
Wolff
,
A.
,
2012
, “
Influence of Engine Load on Piston Ring Pack Operation of a Marine Two-Stroke Engine
,”
J. KONES
,
19
(
2
), pp.
557
568
.
80.
Kashdan
,
J.
, and
Thirouard
,
B.
,
2011
, “
Optical Engines as Representative Tools in the Development of New Combustion Engine Concepts
,”
Oil Gas Sci. Technol. –Rev. IFP Energies nouvelles
,
66
(
5
), pp.
759
777
. 10.2516/ogst/2011134
81.
Hagos
,
F. Y.
,
Aziz
,
A. R. A.
, and
Sulaiman
,
S. A.
,
2014
, “
Effect of Air-Fuel Ratio on the Combustion Characteristics of Syngas (H2:CO) in Direct-Injection Spark-Ignition Engine
,”
Energy Procedia
,
61
, pp.
2567
2571
. 10.1016/j.egypro.2014.12.047
82.
Peñaranda
,
A.
,
Boggio
,
S. M.
,
Lacava
,
P. T.
,
Merola
,
S.
, and
Irimescu
,
A.
,
2018
, “
ScienceDirect Characterization of Flame Front Propagation During Early and Late Combustion for Methane-Hydrogen Fueling of an Optically Accessible SI Engine
,”
Int. J. Hydrogen Energy
,
43
(
52
), pp.
23538
23557
. 10.1016/j.ijhydene.2018.10.167
83.
Giovanni
,
D.
,
Claudio
,
P.
,
Lorenzo
,
R.
,
Carlo
,
G.
,
Matteo
,
D.
, and
Nazario
,
B.
,
2014
, “
Combustion Analysis in an Optical Access Engine
,”
Energy Procedia
,
45
(
2014
), pp.
959
966
. 10.1016/j.egypro.2014.01.101
84.
Martinez
,
S.
,
Irimescu
,
A.
,
Merola
,
S. S.
,
Lacava
,
P.
, and
Curto-Riso
,
P.
,
2017
, “
Flame Front Propagation in an Optical GDI Engine under Stoichiometric and Lean Burn Conditions
,”
Energies
,
10
, p.
1337
.
85.
Yang
,
J.
,
Dong
,
X.
,
Wu
,
Q.
, and
Xu
,
M.
,
2019
, “
Effects of Enhanced Tumble Ratios on the In-Cylinder Performance of a Gasoline Direct Injection Optical Engine
,”
Appl. Energy
,
236
, pp.
137
146
. 10.1016/j.apenergy.2018.11.059
86.
Chen
,
L.
,
Wei
,
H.
,
Zhang
,
R.
,
Pan
,
J.
,
Zhou
,
L.
, and
Feng
,
D.
,
2019
, “
Effects of Spark Plug Type and Ignition Energy on Combustion Performance in an Optical SI Engine Fueled With Methane
,”
Appl. Therm. Eng.
,
148
, pp.
188
195
. 10.1016/j.applthermaleng.2018.11.052
87.
Ragadia
,
S. Y.
, and
Iyer
,
R. C.
,
2015
, “
A Review Paper on Theoretical & Experimental Investigations of a Biogas Engine Technology
,”
IJSRD – International Journal for Scientific Research & Development|
,
3
(
6
), pp.
864
869
.
88.
Söder
,
M.
,
2013
, “
Numerical Investigation of Internal Combustion Engine Related Flows, Licentiate dissertation
”,
Stockholm
,
2013
.
89.
Merola
,
S. S.
,
Tornatore
,
C.
,
Irimescu
,
A.
,
Marchitto
,
L.
, and
Valentino
,
G.
,
2016
, “
Optical Diagnostics of Early Flame Development in a DISI (Direct Injection Spark Ignition) Engine Fueled with n-Butanol and Gasoline
,”
Energy
,
108
, pp.
50
62
. 10.1016/j.energy.2015.10.140
90.
Liu
,
H.
,
Wang
,
X.
,
Zhang
,
D.
,
Dong
,
F.
,
Liu
,
X.
,
Yang
,
Y.
,
Huang
,
H.
,
Wang
,
Y.
,
Wang
,
Q.
, and
Zheng
,
Z.
,
2019
, “
Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle
,”
Energies
,
12
(
10
), pp.
1845
. https://doi.org/10.3390/en12101845
You do not currently have access to this content.