Abstract

Currently, the reclamation and reuse of water have not reached their full potential, although more energy is needed to obtain and transport freshwater and this solution has a more serious environmental impact. Agricultural irrigation is, by far, the largest application of reclaimed water worldwide, so the proposed concept may result in the production of water that can be used, among others, for crop irrigation. This paper describes a novel installation for the recovery of the agricultural water from the digestate, along with the results of initial experiments. Currently, water is wasted, due to evaporation, in anaerobic digestion plants, as the effluent from dewatering of the digestate is discharged into lagoons. Moreover, water that stays within the interstitial space of the digestate is lost in a similar fashion. With increasing scarcity of water in rural areas, such waste should not be neglected. The study indicates that hydrothermal carbonization (HTC) enhances mechanical dewatering of the agricultural digestate and approximately 900 L of water can be recovered from one ton. Dewatered hydrochars had a lower heating value of almost 10 MJ/kg, indicating the possibility of using it as a fuel for the process. The aim of this Design Innovation Paper is to outline the newly developed concept of an installation that could enable recovery of water from, so far, the neglected resource—i.e., digestate from anaerobic digestion plants.

References

1.
Wong
,
K. V.
,
2014
, “
Energy–Water–Food Nexus and Recommendations for Security
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
034701
. 10.1115/1.4028773
2.
Wong
,
K. V.
, and
Pecora
,
C.
,
2015
, “
Recommendations for Energy–Water–Food Nexus Problems
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032002
. 10.1115/1.4028139
3.
Plana
,
P. V.
, and
Noche
,
B.
,
2016
, “
A Review of the Current Digestate Distribution Models: Storage and Transport
,”
Proceedings of the 8th International Conference on Waste Management and the Environment (WM 2016)
,
Valencia, Spain
,
June 7–9
, pp.
345
357
.
4.
Vázquez-Rowe
,
I.
,
Golkowska
,
K.
,
Lebuf
,
V.
,
Vaneeckhaute
,
C.
,
Michels
,
E.
,
Meers
,
E.
,
Benetto
,
E.
, and
Koster
,
D.
,
2015
, “
Environmental Assessment of Digestate Treatment Technologies Using LCA Methodology
,”
Waste Manage.
,
43
, pp.
442
459
. 10.1016/j.wasman.2015.05.007
5.
Monfet
,
E.
,
Aubry
,
G.
, and
Ramirez
,
A. A.
,
2017
, “
Nutrient Removal and Recovery From Digestate: A Review of the Technology
,”
Biofuels
,
9
(
2
), pp.
247
262
. 10.1080/17597269.2017.1336348
6.
Thines
,
K. R.
,
Abdullah
,
E. C.
,
Mubarak
,
N. M.
, and
Ruthiraan
,
M.
,
2017
, “
Synthesis of Magnetic Biochar From Agricultural Waste Biomass to Enhancing Route for Waste Water and Polymer Application: A Review
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
257
276
. 10.1016/j.rser.2016.09.057
7.
Törnwall
,
E.
,
Pettersson
,
H.
,
Thorin
,
E.
, and
Schwede
,
S.
,
2017
, “
Post-Treatment of Biogas Digestate—An Evaluation of Ammonium Recovery, Energy Use and Sanitation
,”
Energy Procedia
,
142
, pp.
957
963
. 10.1016/j.egypro.2017.12.153
8.
Chekli
,
L.
,
Kim
,
J. E.
,
El Saliby
,
I.
,
Kim
,
Y.
,
Phuntsho
,
S.
,
Li
,
S.
,
Ghaffour
,
N.
,
Leiknes
,
T.
, and
Kyong Shon
,
H.
,
2017
, “
Fertilizer Drawn Forward Osmosis Process for Sustainable Water Reuse to Grow Hydroponic Lettuce Using Commercial Nutrient Solution
,”
Sep. Purif. Technol.
,
181
, pp.
18
28
. 10.1016/j.seppur.2017.03.008
9.
Moscicki
,
K. J.
,
Niedzwiecki
,
L.
,
Owczarek
,
P.
, and
Wnukowski
,
M.
,
2017
, “
Commoditization of Wet and High Ash Biomass: Wet Torrefaction—A Review
,”
J. Power Technol.
,
97
(
4
), pp.
354
369
.
10.
Wang
,
L.
,
Zhang
,
L.
, and
Li
,
A.
,
2014
, “
Hydrothermal Treatment Coupled With Mechanical Expression at Increased Temperature for Excess Sludge Dewatering: Influence of Operating Conditions and the Process Energetics
,”
Water Res.
,
65
, pp.
85
97
. 10.1016/j.watres.2014.07.020
11.
Svensson
,
K.
,
Kjørlaug
,
O.
,
Higgins
,
M. J.
,
Linjordet
,
R.
, and
Horn
,
S. J.
,
2018
, “
Post-Anaerobic Digestion Thermal Hydrolysis of Sewage Sludge and Food Waste: Effect on Methane Yields, Dewaterability and Solids Reduction
,”
Water Res.
,
132
, pp.
158
166
. 10.1016/j.watres.2018.01.008
12.
De la Rubia
,
M. A.
,
Villamil
,
J. A.
,
Rodriguez
,
J. J.
, and
Mohedano
,
A. F.
,
2018
, “
Effect of Inoculum Source and Initial Concentration on the Anaerobic Digestion of the Liquid Fraction From Hydrothermal Carbonisation of Sewage Sludge
,”
Renew. Energy
,
127
, pp.
697
704
. 10.1016/j.renene.2018.05.002
13.
Fuchs
,
W.
, and
Drosg
,
B.
,
2013
, “
Assessment of the State of the Art of Technologies for the Processing of Digestate Residue From Anaerobic Digesters
,”
Water Sci. Technol.
,
67
(
9
), pp.
1984
1993
. 10.2166/wst.2013.075
14.
Lehmann
,
J.
,
2007
, “
A Handful of Carbon
,”
Nature
,
447
(
7141
), pp.
143
144
. 10.1038/447143a
15.
Fang
,
J.
,
Zhan
,
L.
,
Ok
,
Y. S.
, and
Gao
,
B.
,
2018
, “
Minireview of Potential Applications of Hydrochar Derived From Hydrothermal Carbonization of Biomass
,”
J. Ind. Eng. Chem.
,
57
, pp.
15
21
. 10.1016/j.jiec.2017.08.026
16.
Fagbohungbe
,
M. O.
,
Herbert
,
B. M. J.
,
Hurst
,
L.
,
Ibeto
,
C. N.
,
Li
,
H.
,
Usmani
,
S. Q.
, and
Semple
,
K. T.
,
2017
, “
The Challenges of Anaerobic Digestion and the Role of Biochar in Optimizing Anaerobic Digestion
,”
Waste Manage.
,
61
, pp.
236
249
. 10.1016/j.wasman.2016.11.028
17.
Codignole Luz
,
F.
,
Cordiner
,
S.
,
Manni
,
A.
,
Mulone
,
V.
, and
Rocco
,
V.
,
2018
, “
Biochar Characteristics and Early Applications in Anaerobic Digestion—A Review
,”
J. Environ. Chem. Eng.
,
6
(
2
), pp.
2892
2909
. 10.1016/j.jece.2018.04.015
18.
Zhou
,
Y.
,
Engler
,
N.
, and
Nelles
,
M.
,
2018
, “
Symbiotic Relationship Between Hydrothermal Carbonization Technology and Anaerobic Digestion for Food Waste in China
,”
Bioresour. Technol.
,
260
, pp.
404
412
. 10.1016/j.biortech.2018.03.102
19.
Xu
,
J.
,
Mustafa
,
A. M.
,
Lin
,
H.
,
Choe
,
U. Y.
, and
Sheng
,
K.
,
2018
, “
Effect of Hydrochar on Anaerobic Digestion of Dead Pig Carcass After Hydrothermal Pretreatment
,”
Waste Manage.
,
78
, pp.
849
856
. 10.1016/j.wasman.2018.07.003
20.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M. A.
, and
Al-Sadah
,
J. H. H.
,
2018
, “
Performance Optimization of Mechanical-Vapor-Compression Desalination Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042008
. 10.1115/1.4042087
21.
Arias
,
F. J.
,
2017
, “
Deliberate Salinization of Seawater for Desalination of Seawater
,”
ASME J. Energy Resour. Technol.
,
140
(
3
),
032004
. 10.1115/1.4038053
22.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2013
, “
Experimental Study of a Solar Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
. 10.1115/1.4026915
23.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2015
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011201
. 10.1115/1.4027764
24.
Salamat
,
Y.
,
Rios Perez
,
C. A.
, and
Hidrovo
,
C.
,
2016
, “
Performance Improvement of Capacitive Deionization for Water Desalination Using a Multistep Buffered Approach
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032003
. 10.1115/1.4035067
25.
Salamat
,
S.
,
Rios Perez
,
C. A.
, and
Hidrovo
,
C.
,
2016
, “
Performance Characterization of a Capacitive Deionization Water Desalination System With an Intermediate Solution and Low Salinity Water
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032003
. 10.1115/1.4032427
26.
Kabsch-Korbutowicz
,
M.
,
Wisniewski
,
J.
,
Łakomska
,
S.
, and
Urbanowska
,
A.
,
2011
, “
Application of UF, NF and ED in Natural Organic Matter Removal From Ion-Exchange Spent Regenerant Brine
,”
Desalination
,
280
(
1–3
), pp.
428
431
. 10.1016/j.desal.2011.06.068
27.
Das
,
R.
,
Abd Hamid
,
S. B.
,
Ali
,
M. E.
,
Ismail
,
A. F.
,
Annuar
,
M. S. M.
, and
Ramakrishna
,
S.
,
2014
, “
Multifunctional Carbon Nanotubes in Water Treatment: The Present, Past and Future
,”
Desalination
,
354
, pp.
160
179
. 10.1016/j.desal.2014.09.032
28.
European Biogas Association (EBA)
. (
2017
). “
Annual Statistical Report 2017
.”
29.
Scarlat
,
N.
,
Dallemand
,
J.-F.
, and
Fahl
,
F.
,
2018
, “
Biogas: Developments and Perspectives in Europe
,”
Renew. Energy
,
129
, pp.
457
472
. 10.1016/j.renene.2018.03.006
30.
FAO and ITPS
,
2015
, “
Status of the World’s Soil Resources (SWSR)—Main Report
.”
31.
CEN (European Committe for Standardisation)
,
2011
, “
EN 14778:2011 Solid Biofuels—Sample Preparation
,” ISBN: 978 0 580 69715 9.
32.
Wnukowski
,
M.
,
Owczarek
,
P.
, and
Niedźwiecki
,
Ł
,
2015
, “
Wet Torrefaction of Miscanthus—Characterization of Hydrochars in View of Handling, Storage and Combustion Properties
,”
J. Ecol. Eng.
,
16
(
3
), pp.
161
167
. 10.12911/22998993/2950
33.
Yan
,
W.
,
Hastings
,
J. T.
,
Acharjee
,
T. C.
,
Coronella
,
C. J.
, and
Vásquez
,
V. R.
,
2010
, “
Mass and Energy Balances of Wet Torrefaction of Lignocellulosic Biomass
,”
Energy Fuels
,
24
(
9
), pp.
4738
4742
. 10.1021/ef901273n
34.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K.
,
Mościcki
,
K.
,
Zgóra
,
J.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
, and
Niedźwiecki
,
Ł
,
2017
, “
Torrefaction of Various Types of Biomass in Laboratory Scale, Batch-Wise Isothermal Rotary Reactor and Pilot Scale, Continuous Multi-Stage Tape Reactor
,”
Eng. Prot. Environ.
,
20
(
4
), pp.
457
472
. 10.17512/ios.2017.4.3
35.
Weber
,
K.
,
Heuer
,
S.
,
Quicker
,
P.
,
Li
,
T.
,
Løvås
,
T.
, and
Scherer
,
V.
,
2018
, “
An Alternative Approach for the Estimation of Biochar Yields
,”
Energy Fuels
,
32
(
9
), pp.
9506
9512
. 10.1021/acs.energyfuels.8b01825
36.
Moscicki
,
K. J.
,
Niedzwiecki
,
L.
,
Owczarek
,
P.
, and
Wnukowski
,
M.
,
2014
, “
Commoditization of Biomass: Dry Torrefaction and Pelletization—A Review
,”
J. Power Technol.
,
94
(
4
), pp.
233
249
.
37.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K. K.
,
Wnukowski
,
M.
, and
Niedzwiecki
,
L.
,
2018
, “
Slow Pyrolysis of the Sewage Sludge With Additives: Calcium Oxide and Lignite
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062206
. 10.1115/1.4039906
38.
Poudel
,
J.
,
Karki
,
S.
,
Gu
,
J. H.
,
Lim
,
Y.
, and
Oh
,
S. C.
,
2017
, “
Effect of Co-Torrefaction on the Properties of Sewage Sludge and Waste Wood to Enhance Solid Fuel Qualities
,”
J. Residuals Sci. Technol.
,
14
(
3
), pp.
23
36
.
39.
Pulka
,
J.
,
Wiśniewski
,
D.
,
Gołaszewski
,
J.
, and
Białowiec
,
A.
,
2016
, “
Is the Biochar Produced From Sewage Sludge a Good Quality Solid Fuel?
,”
Arch. Environ. Prot.
,
42
(
4
), pp.
125
134
. 10.1515/aep-2016-0043
40.
Mella
,
B.
,
Puchana-Rosero
,
M. J.
,
Costa
,
D. E. S.
, and
Gutterres
,
M.
,
2017
, “
Utilization of Tannery Solid Waste as an Alternative Biosorbent for Acid Dyes in Wastewater Treatment
,”
J. Mol. Liq.
,
242
, pp.
137
145
. 10.1016/j.molliq.2017.06.131
41.
Titirici
,
M.-M.
, and
Antonietti
,
M.
,
2010
, “
Chemistry and Materials Options of Sustainable Carbon Materials Made by Hydrothermal Carbonization
,”
Chem. Soc. Rev.
,
39
(
1
), pp.
103
116
. 10.1039/B819318P
42.
Phuntsho
,
S.
,
Shon
,
H. K.
,
Hong
,
S.
,
Lee
,
S.
, and
Vigneswaran
,
S.
,
2011
, “
A Novel Low Energy Fertilizer Driven Forward Osmosis Desalination for Direct Fertigation: Evaluating the Performance of Fertilizer Draw Solutions
,”
J. Membr. Sci.
,
375
(
1–2
), pp.
172
181
. 10.1016/j.memsci.2011.03.038
You do not currently have access to this content.