Abstract

Utilization of sewage sludge, in a way friendly to the environment, is still a subject of intensive investigation. One of the possible solutions is the gasification of sewage sludge. Torrefaction and the use of additive can enhance this process. This study presents the results of the gasification of raw and mildly torrefied sewage sludge, as well as mildly torrefied sewage sludge with the addition of calcium carbonate. Overall, the torrefaction in mild conditions had little influence on the composition of the obtained gas. The influence was much more visible when 5% of calcium carbonate was added. The additive caused the increased average concentration of CH4 and decreased average concentration of H2 in the producer gas. The use of additive also improved the kinetics of the gasification of torrefied sewage sludge. Moreover, the tar deposition diagram confirmed that the use of calcium carbonate enhanced the quality of the produced gas by decreasing the content of the compounds, with a melting point higher than 30 °C, thus minimizing the deposition problem.

References

1.
Kacprzak
,
M.
,
Neczaj
,
E.
,
Fijałkowski
,
K.
,
Grobelak
,
A.
,
Grosser
,
A.
,
Worwag
,
M.
,
Rorat
,
A.
,
Brattebo
,
H.
,
Almås
,
Å
, and
Singh
,
B. R.
,
2017
, “
Sewage Sludge Disposal Strategies for Sustainable Development
,”
Environ. Res.
,
156
(
Aug. 2016
), pp.
39
46
. 10.1016/j.envres.2017.03.010
2.
Werle
,
S.
,
2015
, “
Sewage Sludge-To-Energy Management in Eastern Europe: A Polish Perspective
,”
Ecol. Chem. Eng. S
,
22
(
3
), pp.
459
469
.
3.
Gulyurtlu
,
I.
,
Lopes
,
M. H.
,
Abelha
,
P.
,
Cabrita
,
I.
, and
Oliveira
,
J. F. S.
,
2006
, “
The Study of Partitioning of Heavy Metals During Fluidized Bed Combustion of Sewage Sludge and Coal
,”
ASME J. Energy Resour. Technol.
,
128
(
2
), p.
104
110
. 10.1115/1.2126988
4.
Moscicki
,
K. J.
,
Niedzwiecki
,
L.
,
Owczarek
,
P.
, and
Wnukowski
,
M.
,
2014
, “
Commoditization of Biomass: Dry Torrefaction and Pelletization-a Review
,”
J. Power Technol.
,
94
(
4
), pp.
233
249
.
5.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2017
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
. 10.1115/1.4038406
6.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
. 10.1115/1.4007484
7.
Akinyemi
,
O. S.
,
Jiang
,
L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
. 10.1115/1.4040202
8.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
9.
Sun
,
M.
,
Yang
,
Y.
, and
Zhang
,
M.
,
2019
, “
A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102205
. 10.1115/1.4043634
10.
van der Stelt
,
M. J. C.
,
Gerhauser
,
H.
,
Kiel
,
J. H. A.
, and
Ptasinski
,
K. J.
,
2011
, “
Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review
,”
Biomass Bioenergy
,
35
(
9
), pp.
3748
3762
.
11.
Tumuluru
,
J. S.
,
Sokhansanj
,
S.
,
Hess
,
J. R.
,
Wright
,
C. T.
, and
Boardman
,
R. D.
,
2011
, “
A Review on Biomass Torrefaction Process and Product Properties for Energy Applications
,”
Ind. Biotechnol.
,
7
(
5
), pp.
384
401
. 10.1089/ind.2011.7.384
12.
Nyakuma
,
B. B.
,
Magdziarz
,
A.
, and
Werle
,
S.
,
2016
, “
Physicochemical, Thermal and Kinetic Analysis of Sewage Sludge
,”
Proc. ECOpole
,
10
(
2
), pp.
473
480
.
13.
Magdziarz
,
A.
,
Wilk
,
M.
, and
Kosturkiewicz
,
B.
,
2011
, “
Investigation of Sewage Sludge Preparation for Combustion Process
,”
Chem. Process Eng. - Inz. Chem. Procesowa
,
32
(
4
), pp.
299
309
.
14.
Magdziarz
,
A.
, and
Werle
,
S.
,
2014
, “
Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS
,”
Waste Manag.
,
34
(
1
), pp.
174
179
. 10.1016/j.wasman.2013.10.033
15.
Trinh
,
T. T.
,
Werle
,
S.
,
Tran
,
K.-Q.
,
Magdziarz
,
A.
,
Sobek
,
S.
, and
Pogrzeba
,
M.
,
2019
, “
Energy Crops for Sustainable Phytoremediation—Thermal Decomposition Kinetics
,”
Energy Procedia
,
158
, pp.
873
878
. 10.1016/j.egypro.2019.01.224
16.
Pulka
,
J.
,
Wiśniewski
,
D.
,
Gołaszewski
,
J.
, and
Białowiec
,
A.
,
2016
, “
Is the Biochar Produced From Sewage Sludge a Good Quality Solid Fuel?
,”
Arch. Environ. Prot.
,
42
(
4
), pp.
125
134
. 10.1515/aep-2016-0043
17.
Poudel
,
J.
,
Ohm
,
T. I.
,
Lee
,
S. H.
, and
Oh
,
S. C.
,
2015
, “
A Study on Torrefaction of Sewage Sludge to Enhance Solid Fuel Qualities
,”
Waste Manag.
,
40
, pp.
112
118
. 10.1016/j.wasman.2015.03.012
18.
Atienza-Martínez
,
M.
,
Fonts
,
I.
,
Ábrego
,
J.
,
Ceamanos
,
J.
, and
Gea
,
G.
,
2013
, “
Sewage Sludge Torrefaction in a Fluidized Bed Reactor
,”
Chem. Eng. J.
,
222
, pp.
534
545
. 10.1016/j.cej.2013.02.075
19.
Atienza-Martínez
,
M.
,
Mastral
,
J. F.
,
Ábrego
,
J.
,
Ceamanos
,
J.
, and
Gea
,
G.
,
2015
, “
Sewage Sludge Torrefaction in an Auger Reactor
,”
Energy Fuels
,
29
(
1
), pp.
160
170
. 10.1021/ef501425h
20.
Huang
,
Y. W.
,
Chen
,
M. Q.
, and
Luo
,
H. F.
,
2016
, “
Nonisothermal Torrefaction Kinetics of Sewage Sludge Using the Simplified Distributed Activation Energy Model
,”
Chem. Eng. J.
,
298
, pp.
154
161
. 10.1016/j.cej.2016.04.018
21.
Do
,
T. X.
,
Lim
,
Y.
,
Cho
,
H.
,
Shim
,
J.
,
Yoo
,
J.
,
Rho
,
K.
,
Choi
,
S.-G.
, and
Park
,
B.-Y.
,
2017
, “
Process Modeling and Energy Consumption of Fry-Drying and Torrefaction of Organic Solid Waste
,”
Dry. Technol.
,
35
(
6
), pp.
754
765
. 10.1080/07373937.2016.1211674
22.
Wang
,
N. Y.
,
Shih
,
C. H.
,
Chiueh
,
P. T.
, and
Huang
,
Y. F.
,
2013
, “
Environmental Effects of Sewage Sludge Carbonization and Other Treatment Alternatives
,”
Energies
,
6
(
2
), pp.
871
883
. 10.3390/en6020871
23.
Lasek
,
J. A.
,
Kopczyński
,
M.
,
Janusz
,
M.
,
Iluk
,
A.
, and
Zuwała
,
J.
,
2017
, “
Combustion Properties of Torrefied Biomass Obtained From Flue Gas-Enhanced Reactor
,”
Energy
,
119
, pp.
362
368
. 10.1016/j.energy.2016.12.079
24.
Joshi
,
Y.
,
Di Marcello
,
M.
,
Krishnamurthy
,
E.
, and
De Jong
,
W.
,
2015
, “
Packed-Bed Torrefaction of Bagasse Under Inert and Oxygenated Atmospheres
,”
Energy Fuels
,
29
(
8
), pp.
5078
5087
. 10.1021/acs.energyfuels.5b00779
25.
Uemura
,
Y.
,
Saadon
,
S.
,
Osman
,
N.
,
Mansor
,
N.
, and
Tanoue
,
K. I.
,
2015
, “
Torrefaction of Oil Palm Kernel Shell in the Presence of Oxygen and Carbon Dioxide
,”
Fuel
,
144
, pp.
171
179
. 10.1016/j.fuel.2014.12.050
26.
Uemura
,
Y.
,
Omar
,
W.
,
Othman
,
N. A.
,
Yusup
,
S.
, and
Tsutsui
,
T.
,
2013
, “
Torrefaction of Oil Palm EFB in the Presence of Oxygen
,”
Fuel
,
103
, pp.
156
160
. 10.1016/j.fuel.2011.11.018
27.
Chen
,
W. H.
,
Zhuang
,
Y. Q.
,
Liu
,
S. H.
,
Juang
,
T. T.
, and
Tsai
,
C. M.
,
2016
, “
Product Characteristics From the Torrefaction of Oil Palm Fiber Pellets in Inert and Oxidative Atmospheres
,”
Bioresour. Technol.
,
199
, pp.
367
374
. 10.1016/j.biortech.2015.08.066
28.
Chen
,
W. H.
,
Lu
,
K. M.
,
Liu
,
S. H.
,
Tsai
,
C. M.
,
Lee
,
W. J.
, and
Lin
,
T. C.
,
2013
, “
Biomass Torrefaction Characteristics in Inert and Oxidative Atmospheres at Various Superficial Velocities
,”
Bioresour. Technol.
,
146
(
x
), pp.
152
160
. 10.1016/j.biortech.2013.07.064
29.
Lu
,
K. M.
,
Lee
,
W. J.
,
Chen
,
W. H.
,
Liu
,
S. H.
, and
Lin
,
T. C.
,
2012
, “
Torrefaction and Low Temperature Carbonization of Oil Palm Fiber and Eucalyptus in Nitrogen and Air Atmospheres
,”
Bioresour. Technol.
,
123
, pp.
98
105
. 10.1016/j.biortech.2012.07.096
30.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Krochmalny
,
K.
,
Kowal
,
M.
,
Baranowski
,
M.
,
Zgóra
,
J.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
, and
Niedzwiecki
,
L.
,
2019
, “
The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070701
. 10.1115/1.4042822
31.
Rakhshi
,
A.
, and
Wiltowski
,
T.
,
2018
, “
A Kinetic Assessment of Entrained Flow Gasification Modeling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092204
. 10.1115/1.4040061
32.
Mesfun
,
S.
,
Lundgren
,
J.
,
Toffolo
,
A.
,
Lindbergh
,
G.
,
Lagergren
,
C.
, and
Engvall
,
K.
,
2018
, “
Integration of an Electrolysis Unit for Producer Gas Conditioning in a Bio-Synthetic Natural Gas Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012002
. 10.1115/1.4040942
33.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
34.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092002
. 10.1115/1.4039873
35.
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2020
, “
Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011401
. 10.1115/1.4044193
36.
Werle
,
S.
,
2013
, “
Sewage Sludge Gasification: Theoretical and Experimental Investigation
,”
Environ. Prot. Eng.
,
39
(
2
), pp.
25
32
.
37.
Werle
,
S.
,
2014
, “
Impact of Feedstock Properties and Operating Conditions on Sewage Sludge Gasification in a Fixed Bed Gasifier
,”
Waste Manage. Res.
,
32
(
10
), pp.
954
960
. 10.1177/0734242X14535654
38.
Werle
,
S.
, and
Dudziak
,
M.
,
2016
, “
Evaluation of the Possibility of the Sewage Sludge Gasification Gas Use as a Fuel
,”
Ecol. Chem. Eng. S
,
23
(
2
), pp.
229
236
.
39.
Szwaja
,
S.
,
Kovacs
,
V. B.
,
Bereczky
,
A.
, and
Penninger
,
A.
,
2013
, “
Sewage Sludge Producer Gas Enriched with Methane as a Fuel to a Spark Ignited Engine
,”
Fuel Process. Technol.
,
110
, pp.
160
166
. 10.1016/j.fuproc.2012.12.008
40.
Werle
,
S.
, and
Dudziak
,
M.
,
2014
, “
Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification
,”
Energies
,
7
(
1
), pp.
462
476
. 10.3390/en7010462
41.
Reed
,
G. P.
,
Paterson
,
N. P.
,
Zhuo
,
Y.
,
Dugwell
,
D. R.
, and
Kandiyoti
,
R.
,
2005
, “
Trace Element Distribution in Sewage Sludge Gasification: Source and Temperature Effects
,”
Energy Fuels
,
19
(
1
), pp.
298
304
. 10.1021/ef049943y
42.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Niedzwiecki
,
L.
,
Czerep
,
M.
,
Kowal
,
M.
,
Krochmalny
,
K.
,
Zgora
,
J.
,
Ostrycharczyk
,
M.
,
Baranowski
,
M.
,
Tic
,
W. J.
, and
Guzialowska-Tic
,
J.
,
2019
, “
Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge
,”
Energies
,
12
(
175
), pp.
1
18
.
43.
Schweitzer
,
D.
,
Gredinger
,
A.
,
Schmid
,
M.
,
Waizmann
,
G.
,
Beirow
,
M.
,
Spörl
,
R.
, and
Scheffknecht
,
G.
,
2018
, “
Steam Gasification of Wood Pellets, Sewage Sludge and Manure: Gasification Performance and Concentration of Impurities
,”
Biomass Bioenergy
,
111
, pp.
308
319
. 10.1016/j.biombioe.2017.02.002
44.
Akkache
,
S.
,
Hernández
,
A. B.
,
Teixeira
,
G.
,
Gelix
,
F.
,
Roche
,
N.
, and
Ferrasse
,
J. H.
,
2016
, “
Co-Gasification of Wastewater Sludge and Different Feedstock: Feasibility Study
,”
Biomass Bioenergy
,
89
, pp.
201
209
. 10.1016/j.biombioe.2016.03.003
45.
Werle
,
S.
,
2015
, “
Numerical Analysis of the Combustible Properties of Sewage Sludge Gasification Gas
,”
Chem. Eng. Trans.
,
45
, pp.
1021
1026
.
46.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K. K.
,
Wnukowski
,
M.
, and
Niedzwiecki
,
L.
,
2018
, “
Slow Pyrolysis of the Sewage Sludge with Additives: Calcium Oxide and Lignite
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062206
.
47.
Tic
,
W.
,
Guziałowska-Tic
,
J.
,
Pawlak-Kruczek
,
H.
,
Woźnikowski
,
E.
,
Zadorożny
,
A.
,
Niedźwiecki
,
Ł
,
Wnukowski
,
M.
,
Krochmalny
,
K.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
,
Baranowski
,
M.
,
Zgóra
,
J.
, and
Kowal
,
M.
,
2018
, “
Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge
,”
Energies
,
11
(
4
), p.
748
. 10.3390/en11040748
48.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K.
,
Mościcki
,
K.
,
Zgóra
,
J.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
, and
Niedźwiecki
,
Ł
,
2017
, “
Torrefaction of Various Types of Biomass in Laboratory Scale, Batch-Wise Isothermal Rotary Reactor and Pilot Scale, Continuous Multi-Stage Tape Reactor
,”
Eng. Prot. Environ.
,
20
(
4
), pp.
457
472
. 10.17512/ios.2017.4.3
49.
Weber
,
K.
,
Heuer
,
S.
,
Quicker
,
P.
,
Li
,
T.
,
Løvås
,
T.
, and
Scherer
,
V.
,
2018
, “
An Alternative Approach for the Estimation of Biochar Yields
,”
Energy Fuels
,
32
(
9
), pp.
9506
9512
. 10.1021/acs.energyfuels.8b01825
50.
Poudel
,
J.
,
Karki
,
S.
,
Gu
,
J. H.
,
Lim
,
Y.
, and
Oh
,
S. C.
,
2017
, “
Effect of Co-Torrefaction on the Properties of Sewage Sludge and Waste Wood to Enhance Solid Fuel Qualities
,”
J. Residuals Sci. Technol.
,
14
(
3
), pp.
23
36
.
You do not currently have access to this content.