Abstract

A fully coupled hydro and geomechanical model has been used to predict the transient pressure disturbance, reservoir deformation, and effective stress distribution in both homogeneous and heterogeneous reservoirs. The heterogeneous reservoir is conceptualized by explicitly considering the spatial distributions of porosity and permeability as against assuming it as constant values. The finite element method was used in the coupled model in conjunction with the poroelasticity. Transient pressure disturbance is significantly influenced by the overburden during the production in both homogeneous and heterogeneous reservoirs for all the perforation schemes. Perforation scheme 2 provides the optimum reservoir performance when compared with other three schemes in terms of transient pressure distribution and reservoir subsidence. It also has the ability to overcome both the water and gas coning problems when the reservoir fluid flow is driven by both gas cap and water drive mechanisms. A Biot–Willis coefficient is found to significantly influence both the pressure and stress distribution right from the wellbore to the reservoir boundary. Maximum effective stresses have been generated in the vicinity of the wellbore in the reservoir at a high Biot–Willis coefficient of 0.9. Thus, the present work clearly projects that a Biot–Willis coefficient of 0 cannot be treated to be a homogeneous reservoir by default, while the coupled effect of hydro and geomechanical stresses plays a very critical role. Therefore, the implementation of the coupled hydro and geomechanical numerical models can improve the prediction of transient reservoir behavior efficiently for the simple and complex geological systems effectively.

References

1.
Ahmed
,
T.
, and
Mckinney
,
P. D.
,
2005
,
Advanced Reservoir Engineering
,
Gulf Professional Publishing, Elsevier
.
2.
Lee
,
W. J.
, and
Wattenbarger
,
R. A.
,
1996
,
Gas Reservoir Engineering
,
Society of Petroleum Engineering
.
3.
Ahmed
,
T.
,
2010
,
Reservoir Engineering Handbook
,
Gulf Professional Publishing, Elsevier
.
4.
Zhang
,
M. Y.
, and
Ambastha
,
A. K.
,
1994
, “
New Insights in Pressure-Transient Analysis for Stress-Sensitive Reservoirs
,”
SPE 69th Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 25–28
, pp.
617
628
.
5.
Pedrosa
,
O. A.
, Jr.
,
1986
, “
Pressure Transient Response in Stress-Sensitive Formations
,”
SPE California Regional Meeting, Society of Petroleum Engineers
,
Oakland, CA
,
Apr. 2–4
, p.
12
.
6.
Jelmert
,
T. A.
, and
Selsend
,
H.
,
1997
, “
Pressure Transient Behavior of Stress Sensitive Reservoirs
,”
SPE Latin American/Caribbean Petroleum Engineering Conference
,
Rio de Janeiro, Brazil
,
Aug. 30–Sept. 3
, pp.
1
10
.
7.
Moradi
,
M.
,
Shamloo
,
A.
,
Asadbegi
,
M.
, and
Dezfuli
,
A. D.
,
2017
, “
Three Dimensional Pressure Transient Behavior Study in Stress Sensitive Reservoirs
,”
J. Pet. Sci. Eng.
,
152
, pp.
204
211
. 10.1016/j.petrol.2017.02.017
8.
Ambastha
,
A. K.
, and
Zhang
,
M. Y.
,
1996
, “
Iterative and Numerical Solutions for Pressure Transient Analysis of Stress-Sensitive Reservoirs and Aquifers
,”
Comput. Geosci.
,
22
(
6
), pp.
601
606
. 10.1016/0098-3004(95)00114-X
9.
Chin
,
L. Y.
,
Raghavan
,
R.
, and
Thomas
,
L. K.
,
2000
, “
Fully Coupled Analysis of Well Responses in Stress-Sensitive Reservoirs
,”
SPE Reservoir Eval. Eng.
,
3
(
5
), pp.
435
443
. 10.2118/66222-PA
10.
Hu
,
J.
,
2013
, “
A Reservoir/Wellbore-Coupling Model for the Pressure, Flow Rate, and Optimum Perforation Distribution in Gas
,”
Energy Technol.
,
1
(
10
), pp.
587
595
. 10.1002/ente.201300096
11.
Wang
,
H.
,
Wang
,
G.
,
Chen
,
Z. X. (John)
, and
Wong
,
R. C. K.
,
2010
, “
Deformational Characteristics of Rock in Low Permeable Reservoir and Their Effect on Permeability
,”
J. Pet. Sci. Eng.
,
75
(
1–2
), pp.
240
243
. 10.1016/j.petrol.2010.11.015
12.
Luo
,
W.
,
Liu
,
P.
,
Tian
,
Q.
,
Tang
,
C.
, and
Zhou
,
Y.
,
2017
, “
Effects of Discrete Dynamic Conductivity Fractures on the Transient Pressure of a Vertical Well in a Closed Rectangular Reservoir
,”
Sci. Rep.
,
7
(
1
), pp.
1
12
. 10.1038/s41598-017-15785-9
13.
Zha
,
W.
,
Li
,
D.
,
Zeng
,
Y.
, and
Lu
,
D.
,
2018
, “
Pressure Transient Behaviors of Vertical Wells in Low Permeability Reservoirs With Threshold Pressure Gradient
,”
Int. J. Oil Gas Coal Technol.
,
18
(
3/4
), pp.
279
304
. 10.1504/IJOGCT.2018.093131
14.
Ansah
,
J.
,
Proett
,
M.
, and
Soliman
,
M.
,
2002
, “
Advances in Well Completion Design: A New 3D Finite-Element Wellbore Inflow Model for Optimizing Performance of Perforated Completions
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 20–21
, pp.
1
11
.
15.
Ouyang
,
L.-B.
, and
Aziz
,
K.
,
1998
, “
A Simplified Approach to Couple Wellbore Flow and Reservoir Inflow for Arbitrary Well Configurations
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 27–30
, pp.
1
13
.
16.
Yildiz
,
T.
,
2002
, “
Impact of Perforating on Well Performance and Cumulative Production
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
163
172
. 10.1115/1.1487879
17.
Zhiming
,
W.
,
Jianguang
,
W.
,
Jian
,
Z.
,
Bin
,
G.
, and
Haiyun
,
Y.
,
2010
, “
Optimization of Perforation Distribution for Horizontal Wells Based on Genetic Algorithms
,”
Pet. Sci.
,
7
(
2
), pp.
232
238
. 10.1007/s12182-010-0027-7
18.
Chen
,
H.-Y.
,
Teufel
,
L. W.
, and
Lee
,
R. L.
,
1995
, “
Coupled Fluid Flow and Geomechanics in Reservoir Study—I. Theory and Governing Equations
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 22–25
, pp.
507
519
.
19.
Celis
,
V.
,
Silva
,
R.
,
Ramones
,
M.
,
Guerra
,
J.
, and
Da Prat
,
G.
,
1994
, “
A New Model for Pressure Transient Analysis in Stress Sensitive Naturally Fractured Reservoirs
,”
SPE Adv. Technol. Ser.
,
2
(
1
), pp.
126
135
. 10.2118/23668-PA
20.
Pedrosa
,
O. A.
,
1986
, “
Pressure Transient Response in Stress-Sensitive Formations
,”
Society of Petroleum Engineers—SPE California Regional Meeting
,
Oakland
,
2-4 April
.
21.
Chen
,
Z.
,
Huan
,
G.
, and
Ma
,
Y.
,
2006
,
Computational Methods for Multiphase Flows in Porous Media
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
22.
Liu
,
C.
,
Mehrabian
,
A.
, and
Abousleiman
,
Y. N.
,
2019
, “
Theory and Analytical Solutions to Coupled Processes of Transport and Deformation in Media
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111006
. 10.1115/1.4040890
23.
Mainguy
,
M.
, and
Longuemare
,
P.
,
2002
, “
Coupling Fluid Flow and Rock Mechanics: Formulations of the Partial Coupling Between Reservoir and Geomechanical Simulators
,”
Oil Gas Sci. Technol.
,
57
(
4
), pp.
355
367
. 10.2516/ogst:2002023
24.
Collins
,
R. E.
, and
Jordan
,
J. K.
,
1961
, “
Porosity and Permeability Distribution of Sedimentary Rocks
,”
Society of Petroleum Engineers Journal
, pp.
1
27
.
25.
Nelson
,
P. H.
,
1994
, “
Permeability-Porosity Relationships in Sedimentary Rocks
,”
USGS Publications Warehouse
,
35
(
3
), pp.
38
62
.
26.
Zheng
,
Y.
,
Burridge
,
R.
, and
Burns
,
D.
,
2003
,
Reservoir Simulation With the Finite Element Method Using Biot Poroelastic Approach
,
Massachusetts Institute of Technology, Earth Resources Laboratory
,
Cambridge, MA
, pp.
1
20
.
27.
Guo
,
B.
, and
Schechter
,
D. S.
,
2007
, “
A Simple and Rigorous Mathematical Model for Estimating Inflow Performance of Wells Intersecting Long Fractures
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Kuala Lumpur, Malaysia
, Apr.
14–16
, pp.
645
659
.
28.
Vargas
,
R. O.
,
Lira-Galeana
,
C.
,
Silva
,
D.
, and
Manero
,
O.
,
2015
, “
Inflow Performance of Wells Intersecting Long Fractures With Transient Pressure and Variable Flow-Rate Behavior
,”
J. Pet. Sci. Eng.
,
136
, pp.
23
31
. 10.1016/j.petrol.2015.10.040
29.
Liu
,
G.
,
Pu
,
H.
,
Zhao
,
Z.
, and
Liu
,
Y.
,
2019
, “
Coupled Thermo-Hydro-Mechanical Modeling on Well Pairs in Heterogeneous Porous Geothermal Reservoirs
,”
Energy
,
171
, pp.
631
653
. 10.1016/j.energy.2019.01.022
30.
Giani
,
G.
,
Orsatti
,
S.
,
Peter
,
C.
, and
Rocca
,
V.
,
2018
, “
A Coupled Fluid Flow—Geomechanical Approach for Subsidence Numerical Simulation
,”
Energies
,
11
(
7
), p.
1804
. 10.3390/en11071804
31.
Fjær
,
E.
,
Holt
,
R. M.
,
Horsrud
,
P.
,
Raaen
,
A. M.
, and
Risnes
,
R.
,
2008
,
Petroleum Related Rock Mechanics.
, 2nd ed., Vol. 53,
Elsevier Science
.
32.
Zoccarato
,
C.
,
Ferronato
,
M.
, and
Teatini
,
P.
,
2018
, “
Formation Compaction vs Land Subsidence to Constrain Rock Compressibility of Hydrocarbon Reservoirs
,”
Geomech. Energy Environ.
,
13
, pp.
14
24
. 10.1016/j.gete.2017.12.002
33.
Angus
,
D. A.
,
Dutko
,
M.
,
Kristiansen
,
T. G.
,
Fisher
,
Q. J.
,
Kendall
,
J. M.
,
Baird
,
A. F.
,
Verdon
,
J. P.
,
Barkved
,
O. I.
,
Yu
,
J.
, and
Zhao
,
S.
,
2015
, “
Integrated Hydro-Mechanical and Seismic Modelling of the Valhall Reservoir: A Case Study of Predicting Subsidence, AVOA and Microseismicity
,”
Geomech. Energy Environ.
,
2
, pp.
32
44
. 10.1016/j.gete.2015.05.002
34.
Doornhof
,
D.
,
Kristiansen
,
T. G.
,
Nagel
,
N. B.
,
Pattillo
,
P. D.
, and
Sayers
,
C.
,
2006
, “
Compaction and Subsidence
,”
Oilfield Rev.
,
18
(
1
), pp.
50
68
.
You do not currently have access to this content.