Abstract

Understanding the role of geological uncertainties on reservoir management decisions requires an ensemble of reservoir models that cover the uncertain space of parameters. However, in most cases, high computation time is needed for the flow simulation step, which can have a negative impact on a suitable assessment of flow behavior. Therefore, one important point is to choose a few scenarios from the ensemble of models while preserving the geological uncertainty range. In this study, we present a statistical solution to select the representative models (RMs) based on a novel scheme of measuring the similarity between 3D flow-unit models. The proposed method includes the integration of multidimensional scaling and cluster analysis (IMC). IMC can be applied to the models before the simulation process to save time and costs. To check the validity of the methodology, numerical simulation and then uncertainty analysis are carried out on the RMs and full set. We create an ensemble of 200 3D flow-unit models through the Latin Hypercube sampling method. The models indicate the geological uncertainty range for properties such as permeability, porosity, and net-to-gross. This method is applied to a synthetic benchmark model named UNISIM-II-D and proves to offer good performance in reducing the number of models so that only 9% of the models in the ensemble (18 selected models from 200 models) can be sufficient for the uncertainty quantification if appropriate similarity measures and clustering methods are used.

References

1.
Santos
,
S. M. G.
,
Gaspar
,
A. T. F. S.
, and
Schiozer
,
D. J.
,
2018
, “
Managing Reservoir Uncertainty in Petroleum Field Development: Defining a Flexible Production Strategy From a Set of Rigid Candidate Strategies
,”
J. Petrol. Sci. Eng.
,
171
, pp.
516
528
. 10.1016/j.petrol.2018.07.048
2.
Subbey
,
S.
,
Christie
,
M.
, and
Sambridge
,
M.
,
2004
, “
Prediction Under Uncertainty in Reservoir Modeling
,”
J. Petrol. Sci. Eng.
,
44
(
1–2
), pp.
143
153
. 10.1016/j.petrol.2004.02.011
3.
Jung
,
H.
,
Jo
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Characterization of Various Channel Fields Using an Initial Ensemble Selection Scheme and Covariance Localization
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062906
. 10.1115/1.4037811
4.
Shiqian
,
X.
,
Yuyao
,
L.
,
Yu
,
Z.
,
Sen
,
W.
, and
Qihong
,
F.
,
2020
, “
A History Matching Framework to Characterize Fracture Network and Reservoir Properties in Tight Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042902
. 10.1115/1.4044767
5.
Caers
,
J.
,
2005
,
Petroleum Geostatistics
,
Society of Petroleum Engineers
,
Richardson, TX
.
6.
Scheidt
,
C.
, and
Caers
,
J.
,
2009
, “
Representing Spatial Uncertainty Using Distances and Kernels
,”
Math. Geosci.
,
41
(
4
), pp.
397
419
. 10.1007/s11004-008-9186-0
7.
Armstrong
,
M.
,
Ndiaye
,
A.
,
Razanatsimba
,
R.
, and
Galli
,
A.
,
2013
, “
Scenario Reduction Applied to Geostatistical Simulations
,”
Math. Geosci.
,
45
(
2
), pp.
165
182
. 10.1007/s11004-012-9420-7
8.
Sefat
,
H.
,
Elsheikh
,
M.
,
Muradov
,
A. H.
,
and Davies
,
K. M.
, and
R
,
D.
,
2016
, “
Reservoir Uncertainty Tolerant, Proactive Control of Intelligent Wells
,”
Comput. Geosci.
,
20
(
3
), pp.
655
676
. 10.1007/s10596-015-9513-8
9.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
. 10.1115/1.4036382
10.
Yeh
,
T.
,
Jimenez
,
E.
,
Van Essen
,
G.
,
Chen
,
C.
,
Jin
,
L.
,
Girardi
,
A.
,
Gelderblom
,
P.
,
Horesh
,
L.
, and
Conn
,
A. R.
,
2014
, “
Reservoir Uncertainty Quantification Using Probabilistic History Matching Workflow
,”
SPE Annual Technical Conference and Exhibition
,
Amsterdam, The Netherlands
,
Oct. 27–29
,
Paper No. SPE-170893-MS
.
11.
Meira
,
L. A.
,
Coelho
,
G. P.
,
Silva
,
C. G.
,
Abreu
,
J. A. L.
,
Santos
,
A. A. S.
, and
Schiozer
,
D. J.
,
2019
, “
Improving Representativeness in a Scenario Reduction Process to Aid Decision Making in Petroleum Fields
,”
J. Petrol. Sci. Eng.
,
184
, p.
106398
. 10.1016/j.petrol.2019.106398
12.
Alzraiee
,
A.
, and,
Garcia
,
L. A.
,
2012
, “
Using Cluster Analysis of Hydraulic Conductivity Realizations to Reduce Computational Time for Monte Carlo Simulations
,”
J. Irrig. Drain.
,
138
(
5
), pp.
416
423
. 10.1061/(ASCE)IR.1943-4774.0000416
13.
Steagall
,
D. E.
, and
Schiozer
,
D. J.
,
2001
, “
Uncertainty Analysis in Reservoir Production Forecasts During Appraisal and Pilot Production Phases
,”
SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 11–14
,
Paper No. SPE-66399-MS
.
14.
Schiozer
,
D.
,
Ligero
,
E.
,
Suslick
,
S.
,
Costa
,
A.
, and
Santos
,
J.
,
2004
, “
Use of Representative Models in the Integration of Risk Analysis and Production Strategy Definition
,”
J. Petrol. Sci. Eng.
,
44
(
1–2
), pp.
131
141
. 10.1016/j.petrol.2004.02.010
15.
Costa
,
A. P. A.
, and
Schiozer
,
D. J.
,
2005
, “
Impact of Simplifications in Risk Assessment and Decision-Making Process
,”
SPE Latin American and Caribbean Petroleum Engineering
,
Rio de Janeiro, Brazil
,
June 20–23
,
Paper No. SPE-94938-MS
.
16.
Hayashi
,
S. H. D.
,
Ligero
,
E. L.
, and
Schiozer
,
D. J.
,
2010
, “
Risk Mitigation in Petroleum Field Development by Modular Implantation
,”
J. Petrol. Sci. Eng.
,
75
(
1–2
), pp.
105
113
. 10.1016/j.petrol.2010.10.013
17.
Ligero
,
E. L.
,
Schiozer
,
D. J.
, and
Maschio
,
C.
,
2004
, “
Effect of Grid Size in Risk Assessment of Petroleum Fields
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
,
Paper No. SPE-89845-MS
.
18.
Sarma
,
P.
,
Chen
,
W. H.
, and
Xie
,
J.
,
2013
, “
Selecting Representative Models From a Large Set of Models
,”
SPE Reservoir Simulation Symposium
,
The Woodlands, TX
,
Feb. 18–20
,
Paper No. SPE-163671-MS
.
19.
Meira
,
L. A.
,
Coelho
,
G. P.
,
Santos
,
A. A. S.
, and
Schiozer
,
D. J.
,
2015
, “
Selection of Representative Models for Decision Analysis Under Uncertainty
,”
Comput. Geosci.
,
88
, pp.
67
82
. 10.1016/j.cageo.2015.11.012
20.
Schiozer
,
D. J.
,
Santos
,
A. A. S.
,
Santos
,
S. M. G.
, and
Filho
,
J. C. H.
,
2019
, “
Model-Based Decision Analysis Applied to Petroleum Field Development and Management
,”
Oil Gas Sci. Technol.—Rev. IFP Energies nouvelles
,
74
, p.
46
. 10.2516/ogst/2019019
21.
Morosov
,
A. L.
, and
Schiozer
,
D. J.
,
2017
, “
Field-Development Process Revealing Uncertainty-Assessment Pitfalls
,”
SPE Reserv. Eval. Eng.
,
20
(
03
), pp.
765
778
. 10.2118/180094-PA
22.
Shirangi
,
M. G.
, and
Durlofsky
,
L. J.
,
2016
, “
A General Method to Select Representative Models for Decision Making and Optimization Under Uncertainty
,”
Comput. Geosci.
,
96
, pp.
109
123
. 10.1016/j.cageo.2016.08.002
23.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2016
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
. 10.1115/1.4031446
24.
Wang
,
H.
,
Echeverría-Ciaurri
,
D.
,
Durlofsky
,
L. J.
, and
Cominelli
,
A.
,
2012
, “
Optimal Well Placement Under Uncertainty Using a Retrospective Optimization Framework
,”
Soc. Pet. Eng. (SPE) J.
,
17
(
1
), pp.
112
121
. 10.2118/141950-PA
25.
Torrado
,
R. R.
,
Echeverría-Ciaurri
,
D.
,
Mello
,
U.
, and
Embid Droz
,
S.
,
2015
, “
Opening New Opportunities With Fast Reservoir-Performance Evaluation Under Uncertainty: Brugge Field Case Study
,”
SPE Econ. Manage.
,
7
(
3
), pp.
84
99
. 10.2118/166392-PA
26.
Borg
,
I.
, and
Groenen
,
P.
,
1997
,
Modern Multidimensional Scaling: Theory and Applications
,
Springer Series in Statistics, Springer-Verlag
,
New York
.
27.
Hatampour
,
A.
,
Schaffie
,
M.
, and
Jafari
,
S.
,
2015
, “
Hydraulic Flow Units, Depositional Facies and Pore Type of Kangan and Dalan Formations, South Pars Gas Field, Iran
,”
J. Nat. Gas Sci. Eng.
,
23
, pp.
171
183
. 10.1016/j.jngse.2015.01.036
28.
Mahjour
,
S. K.
,
Ghasem Al-Askari
,
M. K.
, and
Masihi
,
M.
,
2015
, “
Flow Units Verification, Using Statistical Zonation and Application of Stratigraphic Modified Lorenz Plot in Tabnak Gas Field
,”
Egypt. J. Petrol.
,
25
(
2
), pp.
215
220
. 10.1016/j.ejpe.2015.05.018
29.
Mirzaei-Paiaman
,
A.
,
Saboorian-Jooybari
,
H.
, and
Pourafshary
,
P.
,
2015
, “
Improved Method to Identify Hydraulic Flow Units for Reservoir Characterization
,”
Energy Technol.
,
3
(
7
), pp.
726
733
. 10.1002/ente.201500010
30.
Mahjour
,
S. K.
,
Al-Askari
,
M. K. G.
, and
Masihi
,
M.
,
2016
, “
Identification of Flow Units Using Methods of Testerman Statistical Zonation, Flow Zone Index, and Cluster Analysis in Tabnaak Gas Field
,”
J. Petrol. Explor. Prod. Technol.
,
6
(
4
), pp.
577
592
. 10.1007/s13202-015-0224-4
31.
Abbaszadeh
,
M.
,
Fujii
,
H.
, and
Fujimoto
,
F.
,
1996
, “
Permeability Prediction by Hydraulic Flow Units—Theory and Applications
,”
SPE Form. Eval.
,
11
(
04
), pp.
263
271
. 10.2118/30158-PA
32.
Amaefule
,
J. O.
,
Altunbay
,
M.
,
Tiab
,
D.
,
Kersey
,
D. G.
, and
Keelan
,
D. K.
,
1993
, “
Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells
,”
SPE 68th Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3–6
, pp.
1
16
.
33.
Deutsch
,
C. V.
,
2002
,
Geostatistical Reservoir Modeling
,
Oxford University Pres. Inc.
,
New York
.
34.
Nejadi
,
S.
,
Trivedi
,
J. J.
, and
Leung
,
J.
,
2012
, “
Ensemble Kalman Filter Predictor Bias Correction Method for Non-Gaussian Geological Facies Detection
,”
IFAC Proceedings Volumes (IFAC-PapersOnline)
,
1
(
PART 1
),
Trondheim, Norway
,
May 31–June 1
, pp.
163
170
.
35.
Ahmed
,
E. S. A.
,
Elatif
,
R. E. A.
, and
Alser
,
Z. T.
,
2015
, “
Median Filter Performance Based on Different Window Sizes for Salt and Pepper Noise Removal in Gray and RGB Images
,”
Int. J. Signal Process. Image Process. Pattern Recogn.
,
8
(
10
), pp.
343
352
. 10.14257/ijsip.2015.8.10.34
36.
Srinagesh
,
A.
,
Dheeraj
,
A. B. R. L. K.
,
Saradhi Varma
,
G. P.
, and
P
,
G.
,
2014
, “
A New Method for Removal of Salt and Pepper Noise Through Advanced Decision Based Unsymmetric Median Filter
,”
Int. J. Comput. Sci. Inf. Technol.
,
5
(
6
), pp.
7130
7135
.
37.
Fei
,
J.
,
Yarus
,
J. M.
, and
Chambers
,
R.
,
2016
, “
Apply Two-Way Cluster Analysis to Select Candidate Reservoir Models From Multiple Realizations
,”
SPE/IAEE Hydrocarbon Economics and Evaluation Symposium
,
TX
,
May 17–18
,
Paper No. SPE-179955-MS
.
38.
Sokal
,
R. R.
, and
Michener
,
C. D.
,
1958
, “
A Statistical Methods for Evaluating Relationships
,”
Sci. Res.
,
38
, pp.
1409
1448
.
39.
Borg
,
I.
, and
Groenen
,
P.
,
2005
,
Modern Multidimensional Scaling: Theory and Applications
,
Springer Series in Statistics, Springer Verlag
,
New York
.
40.
Paulovich
,
F. V.
,
Nonato
,
L. G.
,
Minghim
,
R.
, and
Levkowitz
,
H.
,
2008
, “
Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping
,”
IEEE Trans. Vis. Comput. Graph.
,
14
(
3
), pp.
564
575
. 10.1109/TVCG.2007.70443
41.
Sahaf
,
Z.
,
Hamdi
,
H.
,
Cabral Ramos Mota
,
R.
,
Sousa M.
,
C.
, and
Maurer
,
F.
,
2018
, “
A Visual Analytics Framework for Exploring Uncertainties in Reservoir Models
,”
Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
,
Funchal, Madeira, Portugal
,
Jan. 27–29
,
Volume 3
:
IVAPP
, pp.
74
84
.
42.
Abonyi
,
J.
, and
Feil
,
B.
,
2007
,
Cluster Analysis for Data Mining and System Identification
,
Birkhauser Verlag AG
,
Basel, Switzerland
.
43.
Everitt
,
B. S.
,
Landau
,
S.
, and
Leese
,
M.
,
2009
,
Cluster Analysis
, 4th ed.,
Wiley
,
Chichester, UK
.
44.
Mahjour
,
S. K.
,
Correia
,
M. G.
,
Santos
,
A. A. S.
, and
Schiozer
,
D. J.
,
2019
, “
Developing a Workflow to Represent Fractured Carbonate Reservoirs for Simulation Models Under Uncertainties Based on Flow Unit Concept
,”
Oil Gas Sci. Technol.—Rev. IFP Energies nouvelles
,
74
, p.
15
. 10.2516/ogst/2018096
45.
Trupti
,
M. K.
, and
Makwana
,
P. R.
,
2013
, “
Review on Determining the Number of Cluster in K-Means Clustering
,”
Int. J. Adv. Res. Comput. Sci. Manage. Stud.
,
1
(
6
), pp.
90
95
.
46.
Correia
,
M. G.
,
Hohendorff
,
J.
,
Gaspar
,
A. T. F. S.
, and
Schiozer
,
D.
,
2015
, “
UNISIM-II-D: Benchmark Case Proposal Based on a Carbonate Reservoir
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
,
Quito, Ecuador
,
Nov. 18–20
,
Paper No. SPE-177140-MS
.
You do not currently have access to this content.