Abstract

In order to solve the problem of the unclear understanding of the water cone behavior and its influencing factors of horizontal well in a heavy oil reservoir with bottom water, in this paper, a series of physical models were established to quantitatively describe the inner relationships between them and further illustrated their influence on the water-cut increasing law. The results showed that the water cone and water-cut grew quickly in the heavy oil reservoir with bottom water. The sweep efficiency of the basic 2D sand-pack model reaches 0.68. The decrement of crude oil viscosity increases the sweep efficiency to about 0.08. The increment of production pressure drop increases the sweep efficiency to about 0.05–0.07. Heterogeneity enhancement decreases the sweep efficiency to about 0.06. The addition of adjustment well and barriers increases the sweep efficiency to about 0.20 and 0.08, respectively. The final sweep efficiency of the whole water cone in the 3D sand-pack model reaches 0.42. Finally, we found that the water-cut increment rules are mainly affected by water cone behavior, production schedule, and the location and distribution of barriers. The study in this paper lays a foundation for the rational and effective development of heavy oil reservoirs with bottom water, which has a broad field application prospects in the future.

References

1.
You
,
Q.
,
Wen
,
Q.
,
Fang
,
J.
,
Guo
,
M.
,
Zhang
,
Q.
, and
Dai
,
C.
,
2019
, “
Experimental Study on Lateral Flooding for Enhanced Oil Recovery in Bottom-Water Reservoir With High Water cut
,”
J. Pet. Sci. Eng.
,
174
(
12
), pp.
747
756
. 10.1016/j.petrol.2018.11.053
2.
Zhao
,
G.
,
Dai
,
C.
,
Gu
,
C.
,
You
,
Q.
, and
Sun
,
Y.
,
2019
, “
Expandable Graphite Particles as a Novel in-Depth Steam Channeling Control Agent in Heavy Oil Reservoirs
,”
Chem. Eng. J.
,
368
(
15
), pp.
668
677
. 10.1016/j.cej.2019.03.028
3.
Yu hong
,
D. U.
,
2005
, “
Study on Enhanced Oil Recovery of Ren 11 Fractured Bottom Water Reservoir by Gas Injection
,”
Acta Petrol. Sin.
,
26
(
2
), pp.
80
84
.
4.
Gill
,
A. E.
,
1973
, “
Circulation and Bottom Water Production in the Weddell Sea
,”
Deep-Sea Res. Oceanogr. Abstr.
,
20
(
2
), pp.
111
140
. 10.1016/0011-7471(73)90048-X
5.
Moradidowlatabad
,
M.
, and
Jamiolahmady
,
M.
,
2018
, “
New Approach for Predicting Multiple Fractured Horizontal Wells Performance in Tight Reservoirs
,”
J. Pet. Sci. Eng.
,
162
(
23
), pp.
233
243
. 10.1016/j.petrol.2017.12.040
6.
Chen
,
K.
,
2006
, “
Controlling Technique for Water Coning in Thin Oil Reservoir With Bottom Water in Luliang Oilfield
,”
Acta Petrol. Sin.
,
27
(
6
), pp.
75
78
.
7.
Kai
,
W.
,
Wensheng
,
Z.
,
Ke
,
L.
,
Chen
,
L.
,
Yanhong
,
G.
,
Yue
,
P.
,
Gefeng
,
P.
, and
Qing
,
Y.
,
2019
, “
Study on Water Cone Behavior in Heavy Oil Reservoir With Bottom Water Through Numerical Simulation
,”
Energy Sources Part A
,
79
(
4
), pp.
1
12
. 10.1080/15567036.2019.1604891
8.
Wang
,
Z.
,
Bai
,
Y.
, and
Zhang
,
H.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Pet. Sci. Eng.
,
181
(
106230
), pp.
23
33
. 10.1016/j.petrol.2019.106230
9.
Tagavifar
,
M.
,
Fortenberry
,
R.
,
de Rouffignac
,
E.
,
Sepehrnoori
,
K.
, and
Pope
,
G. A.
,
2016
, “
Heavy-Oil Recovery by Combined Hot Water and Alkali/Cosolvent/Polymer Flooding
,”
SPE J.
,
21
(
01
), pp.
74
86
. 10.2118/170161-PA
10.
Moortgat
,
J.
, and
Firoozabadi
,
A.
,
2017
, “
Water Coning, Water, and CO2 Injection in Heavy-Oil Fractured Reservoirs
,”
SPE Reservoir Eval. Eng.
,
20
(
01
), pp.
168
183
. 10.2118/183648-PA
11.
Zakerian
,
A.
,
Sarafraz
,
S.
,
Tabzar
,
A.
,
Hemmati
,
N.
, and
Shadizadeh
,
S. R.
,
2018
, “
Numerical Modeling and Simulation of Drilling Cutting Transport in Horizontal Wells
,”
J. Pet. Explor. Prod. Technol.
,
8
(
2
), pp.
455
474
. 10.1007/s13202-018-0435-6
12.
Weiping
,
O.
,
Hedong
,
S.
, and
Mian
,
Z.
,
2018
, “
Well Test Analysis for Multistage Fractured Horizontal Wells in Tight Gas Reservoir Considering Stress Sensitivity
,”
Acta Petrol. Sin.
,
39
(
5
), pp.
570
577
.
13.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
,
Zeng
,
F.
, and
Zhang
,
Q.
,
2018
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Tight Sand Reservoirs With Threshold Pressure Gradient
,”
J. Pet. Sci. Eng.
,
165
(
14
), pp.
890
912
. 10.1016/j.petrol.2017.12.095
14.
Wang
,
H.
,
Liao
,
X.
,
Lu
,
N.
,
Cai
,
Z.
,
Liao
,
C.
, and
Dou
,
X.
,
2014
, “
A Study on Development Effect of Horizontal Well With SRV in Unconventional Tight Oil Reservoir
,”
J. Energy Inst.
,
87
(
2
), pp.
114
120
. 10.1016/j.joei.2014.03.015
15.
Kai
,
W.
,
Yan
,
Z.
,
Wensheng
,
Z.
,
Taichao
,
W.
,
Chen
,
L.
,
Yanhong
,
G.
,
Ke
,
L.
, and
Fan
,
L.
,
2019
, “
Study on the Time-Variant Rule of Reservoir Parameters in Sandstone Reservoirs Development
,”
Energy Sources Part A
,
42
(
2
), pp.
194
211
. 10.1080/15567036.2019.1587065
16.
Engler
,
T.
, and
Tiab
,
D.
,
1996
, “
Analysis of Pressure and Pressure Derivative Without Type-Curve Matching, 6. Horizontal Well Tests in Anisotropic Media
,”
J. Pet. Sci. Eng.
,
15
(
2–4
), pp.
153
168
. 10.1016/0920-4105(96)00004-6
17.
Zhao
,
Y. L.
,
Zhang
,
L. H.
,
Luo
,
J. X.
, and
Zhang
,
B. N.
,
2014
, “
Performance of Fractured Horizontal Well With Stimulated Reservoir Volume in Unconventional Gas Reservoir
,”
J. Hydrol.
,
512
(
10
), pp.
447
456
. 10.1016/j.jhydrol.2014.03.026
18.
Zeng
,
Y. C.
,
Su
,
Z.
, and
Wu
,
N. Y.
,
2013
, “
Numerical Simulation of Heat Production Potential From Hot Dry Rock by Water Circulating Through Two Horizontal Wells at Desert Peak Geothermal Field
,”
Energy
,
56
(
63
), pp.
92
107
. 10.1016/j.energy.2013.04.055
19.
Dai
,
C.
,
Kai
,
W.
,
Yifei
,
L.
,
Hui
,
L.
,
Ziyang
,
W.
, and
Mingwei
,
Z.
,
2015
, “
Reutilization of Fracturing Flowback Fluids in Surfactant Flooding for Enhanced Oil Recovery
,”
Energy Fuels
,
29
(
4
), p.
150409125213005
. 10.1021/acs.energyfuels.5b00507
20.
Sang
,
Q.
,
Li
,
Y.
,
Yu
,
L.
,
Li
,
Z.
, and
Dong
,
M.
,
2014
, “
Enhanced Oil Recovery by Branched-Preformed Particle Gel Injection in Parallel-Sandpack Models
,”
Fuel
,
136
(
18
), pp.
295
306
. 10.1016/j.fuel.2014.07.065
21.
Chen
,
C.
,
Wan
,
J.
, and
Zhan
,
H.
,
2003
, “
Theoretical and Experimental Studies of Coupled Seepage-Pipe Flow to a Horizontal Well
,”
J. Hydrol.
,
281
(
1
), pp.
159
171
. 10.1016/S0022-1694(03)00207-5
22.
Zhu
,
R.
, and
Tao
,
L.
,
2004
, “
Boundary Element Method of Free Boundary Issues of Stationary Water Cone for Gas Well
,”
Nat. Gas Ind.
,
24
(
12
), pp.
93
95
.
23.
Ghannam
,
M. T.
, and
Esmail
,
N.
,
2006
, “
Flow Enhancement of Medium-Viscosity Crude Oil
,”
Pet. Sci. Technol.
,
24
(
8
), pp.
985
999
. 10.1081/LFT-200048166
24.
Li
,
H.
, and
Gong
,
J.
,
2011
, “
The Pressure Effect on Rheological Behavior of Water Content of Waxy Crude Oil
,”
Pet. Sci. Technol.
,
29
(
13
), pp.
1344
1352
. 10.1080/10916460903502522
25.
Lee
,
W. C.
,
Lee
,
Y. S.
,
Kim
,
K. H.
,
Lee
,
K. J.
,
Sung
,
W. M.
, and
Kim
,
J.
,
2011
, “
Investigation of Gas and Water Coning Behavior for the Enhancement of Oil Production
,”
Korean J. Chem. Eng.
,
28
(
11
), pp.
2102
2109
. 10.1007/s11814-011-0106-5
26.
Heidemann
,
S. R.
,
Lamoureux
,
P.
, and
Buxbaum
,
R. E.
,
1990
, “
Growth Cone Behavior and Production of Traction Force
,”
J. Cell Biol.
,
111
(
1
), pp.
1949
1957
. 10.1083/jcb.111.5.1949
You do not currently have access to this content.