Abstract

Wellbore instability is a critical issue restricting efficient well drilling and successful development of oil and gas field. Most instability problems originate from shale formations because of their distinct laminated structures that cause significant anisotropy and moderate to high clay contents that are prone to shrinkage and swelling. To account for these influences on the mechanical responses of shales, this study aims to identify an appropriate strength criterion for stability analyses. Two anisotropic criteria including single plane of weakness and the modified Hoek–Brown criteria were compared to evaluate their suitability in characterizing the anisotropic strength of layered rocks including shale, schist, and slate under different confining pressures. Comparative case studies indicated that the single plane of weakness criterion overestimates the strength of layered rocks at some orientation angles. The modified Hoek–Brown criterion can fit well with the experimental data of layered rocks. Moreover, wellbore stability analysis models for shale gas wells were built, respectively, for each criterion and applied to in situ scenarios. The single plane of weakness and modified Hoek–Brown criteria provide similar results of collapse pressure, and the shale failure is mainly determined by the bedding plane. This further validates that the modified Hoek–Brown criterion is a good choice for wellbore stability analysis in shale formations with bedding planes. This study shows the potential of using the modified Hoek–Brown criterion to enhance the safety and efficiency of well drilling and operation in shale formations.

References

1.
Dokhani
,
V.
,
Yu
,
M.
,
Miska
,
S. Z.
, and
Bloys
,
J. B.
,
2015
, “
The Effects of Anisotropic Transport Coefficients on Pore Pressure in Shale Formations
,”
ASME J. Energy Res. Technol.
,
137
(
3
), p.
032905
. 10.1115/1.4029411
2.
Chen
,
X.
,
Gao
,
D.
,
Yang
,
J.
,
Luo
,
M.
,
Feng
,
Y.
, and
Li
,
X.
,
2018
, “
A Comprehensive Wellbore Stability Model Considering Poroelastic and Thermal Effects for Inclined Wellbores in Deepwater Drilling
,”
ASME J. Energy Res. Technol.
,
140
(
9
), p.
092903
. 10.1115/1.4039983
3.
Wang
,
H.
,
Zhang
,
D.
,
Zhang
,
D.
,
Tan
,
B.
,
Qiao
,
K.
, and
Yu
,
J.
,
2012
, “
Drilling Technologies on Shale Gas in Weiyuan Structure
,”
Drill. Prod. Technol.
,
35
(
2
), pp.
9
11
. 10.3969/J.ISSN.1006-768X.2012.02.03
4.
Zoback
,
M. D.
,
2007
,
Reservoir Geomechanics
,
Cambridge University Press
,
Cambridge
,
Chap. 10
, pp.
316
421
.
5.
Aadnoy
,
B. S.
, and
Chenevert
,
M. E.
,
1987
, “
Stability of Highly Inclined Boreholes
,”
SPE Drill. Eng.
,
2
(
4
), pp.
64
74
. 10.2118/16052-PA
6.
Aadnoy
,
B. S.
,
1988
, “
Modelling of the Stability of Highly Inclined Boreholes in Anisotropic Rock Formations
,”
SPE Drill. Eng.
,
3
(
3
), pp.
259
268
. 10.2118/16526-PA
7.
Ong
,
S. H.
, and
Roegiers
,
J. C.
,
1993
, “
Influence of Anisotropies in Borehole Stability
,”
Int. J. Rock. Mech. Min. Sci. Geomech. Abstr.
,
30
(
7
), pp.
1069
1075
. 10.1016/0148-9062(93)90073-M
8.
Rahman
,
M. K.
,
Chen
,
Z.
, and
Rahman
,
S. S.
,
2003
, “
Modeling Time-Dependent Pore Pressure Due to Capillary and Chemical Potential Effects and Resulting Wellbore Stability in Shales
,”
ASME J. Energy Res. Technol.
,
125
(
3
), pp.
169
176
. 10.1115/1.1595111
9.
Aoki
,
T.
,
Tan
,
C. P.
, and
Bamford
,
W. E.
,
1993
, “
Effects of Deformation and Strength Anisotropy on Borehole Failures in Saturated Shales
,”
Int. J. Rock. Mech. Min. Sci. Geomech. Abstr.
,
30
(
7
), pp.
1031
1034
. 10.1016/0148-9062(93)90067-N
10.
Zou
,
Y.
,
Taylor
,
W. E. G.
, and
Heath
,
D. J.
,
1996
, “
A Numerical Model for Borehole Breakouts
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
33
(
1
), pp.
103
109
. 10.1016/0148-9062(95)00026-7
11.
Yamamoto
,
K.
, and
Uryu
,
N.
,
2002
, “
Discrete Element Approach for the Wellbore Instability of Laminated and Fissured Rocks
,”
SPE/ISRM Rock Mechanics Conference
,
Irving, TX
,
Oct. 20–23
,
SPE Paper No. SPE-78181-MS
.
12.
Gaede
,
O.
,
Karpfinger
,
F.
,
Jocker
,
J.
, and
Prioul
,
R.
,
2012
, “
Comparison Between Analytical and 3D Finite Element Solutions for Borehole Stresses in Anisotropic Elastic Rock
,”
Int. J. Rock Mech. Min. Sci.
,
51
, pp.
53
63
. 10.1016/j.ijrmms.2011.12.010
13.
Parsamehr
,
H.
,
Mohammadi
,
S. D.
, and
Moarefvand
,
P.
,
2015
, “
Numerical Modeling of Wellbore Stability in Layered Rock Masses
,”
Arabian J. Goesci.
,
8
(
12
), pp.
10845
10858
. 10.1007/s12517-015-1962-9
14.
Okland
,
D.
, and
Cook
,
J. M.
,
1998
, “
Bedding-related Borehole Instability in High-Angle Wells
,”
SPE/ISRM Rock Mechanics in Petroleum Engineering
,
Trondheim, Norway
,
July 8–10
,
SPE Paper No. SPE-47285-MS
.
15.
Gupta
,
D.
, and
Zaman
,
M.
,
1999
, “
Stability of Boreholes in a Geologic Medium Including the Effects of Anisotropy
,”
Appl. Math. Mech.
,
20
(
8
), pp.
16
45
. 10.1007/BF02452483
16.
Aadnoy
,
B.
,
Hareland
,
G.
,
Kustamsi
,
A.
, and
Freitas
,
T.
,
2009
, “
Borehole Failure Related to Bedding Plane
,”
43rd US Rock Mechanics Symposium and 4th US–Canada Rock Mechanics Symposium
,
Asheville, NC
,
June 28–July 1
,
ARMA Paper No. ARMA-09-106
. https://www.onepetro.org/conference-paper/ARMA-09-106
17.
Lang
,
J.
,
Li
,
S.
, and
Zhang
,
J.
,
2011
, “
Wellbore Stability Modeling and Real-Time Surveillance for Deepwater Drilling to Weak Bedding Planes and Depleted Reservoirs
,”
SPE/IADC Drilling Conference and Exhibition
,
Amsterdam, The Netherlands
,
Mar. 1–3
,
SPE Paper No. SPE-139708-MS
.
18.
Lee
,
H.
,
Ong
,
S. H.
,
Azeemuddin
,
M.
, and
Goodman
,
H.
,
2012
, “
A Wellbore Stability Model for Formations with Anisotropic Rock Strengths
,”
J. Pet. Sci. Eng.
,
96
, pp.
109
119
. 10.1016/j.petrol.2012.08.010
19.
Li
,
Y.
,
Fu
,
Y.
,
Tang
,
G.
,
She
,
C.
,
Guo
,
J.
, and
Zhang
,
J.
,
2012
, “
Effect of Weak Bedding Planes on Wellbore Stability for Shale Gas Wells
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Tianjin, China
,
July 9–11
,
SPE Paper No. SPE-155666-MS
.
20.
Bassey
,
A.
,
Dosunmu
,
A.
, and
Otutu
,
F.
,
2013
, “
Geomechanics: Modeling Wellbore Stability While Drilling Through a Parallel Weak Bedding Plane; Case Study of Highly Inclined and Horizontal Wells
,”
SPE Nigeria Annual International Conference and Exhibition Lagos
,
Nigeria
,
Aug. 5–7
,
SPE Paper No. SPE-167519-MS
.
21.
Zhang
,
J.
,
2013
, “
Borehole Stability Analysis Accounting for Anisotropies in Drilling to Weak Bedding Planes
,”
Int. J. Rock Mech. Min. Sci.
,
60
(
2
), pp.
160
170
. 10.1016/j.ijrmms.2012.12.025
22.
Chen
,
P.
,
Ma
,
T.
, and
Xia
,
H.
,
2014
, “
A Collapse Pressure Prediction Model of Horizontal Shale Gas Wells With Multiple Weak Planes
,”
Nat. Gas Ind.
,
2
(
1
), pp.
101
107
. 10.1016/j.ngib.2015.02.009
23.
Ma
,
T.
, and
Chen
,
P.
,
2015
, “
Analysis of Wellbore Stability for Horizontal Wells in Stratification Shale
,”
J. Cent. South Univ. Sci. Technol.
,
46
(
4
), pp.
1375
1383
. 10.11817/j.issn.1672-7207.2015.04.027
24.
Chen
,
Z.
,
Wang
,
Q.
, and
Zhao
,
Y.
,
2016
, “
Wellbore Stability Analysis Considering Weak Bedding Plane
,”
Chin. J. Underground Space Eng.
,
12
(
S2
), pp.
632
638
. http://www.en.cnki.com.cn/Article_en/CJFDTotal-BASE2016S2034.htm
25.
Dokhani
,
V.
,
Yu
,
M.
, and
Bloys
,
B.
,
2016
, “
A Wellbore Stability Model for Shale Formations: Accounting for Strength Anisotropy and Fluid Induced Instability
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
174
184
. 10.1016/j.jngse.2016.04.038
26.
Liu
,
X.
,
Zeng
,
W.
,
Liang
,
L.
, and
Lei
,
M.
,
2016
, “
Wellbore Stability Analysis for Horizontal Wells in Shale Formations
,”
J. Nat. Gas Sci. Eng.
,
31
, pp.
1
8
. 10.1016/j.jngse.2016.02.061
27.
Gholami
,
R.
,
Aadnoy
,
B.
,
Foon
,
L. Y.
, and
Elochukwu
,
H.
,
2017
, “
A Methodology for Wellbore Stability Analysis in Anisotropic Formations: A Case Study From the Canning Basin, Western Australia
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
341
360
. 10.1016/j.jngse.2016.11.055
28.
Plácido
,
J. C. R
,
Santos
,
H. M. R.
, and
Galeano
,
Y. D.
,
2002
, “
Drillstring Vibration and Wellbore Instability
,”
ASME J. Energy Res. Technol.
,
124
(
4
), pp.
217
222
. 10.1115/1.1501302
29.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2005
, “
Relation Between the Mogi and the Coulomb Failure Criteria
,”
Int. J. Rock Mech. Min. Sci.
,
42
(
3
), pp.
431
439
. 10.1016/j.ijrmms.2004.11.004
30.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2006
, “
Stability Analysis of Vertical Boreholes Using the Mogi–Coulomb Failure Criterion
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
8
), pp.
1200
1211
. 10.1016/j.ijrmms.2006.04.001
31.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2009
, “
A New Well Path Optimization Model for Increased Mechanical Borehole Stability
,”
J. Pet. Sci. Eng.
,
69
(
1
), pp.
53
62
. 10.1016/j.petrol.2009.05.018
32.
Rahimi
,
R.
, and
Nygaard
,
R.
,
2015
, “
Comparison of Rock Failure Criteria in Predicting Borehole Shear Failure
,”
Int. J. Rock Mech. Min. Sci.
,
79
, pp.
29
40
. 10.1016/j.ijrmms.2015.08.006
33.
Ma
,
T.
,
Chen
,
P.
,
Yang
,
C.
, and
Zhao
,
J.
,
2015
, “
Wellbore Stability Analysis and Well Path Optimization Based on the Breakout Width Model and Mogi–Coulomb Criterion
,”
J. Pet. Sci. Eng.
,
135
, pp.
678
701
. 10.1016/j.petrol.2015.10.029
34.
Feng
,
Y.
,
Li
,
X.
, and
Gray
,
K. E.
,
2018
, “
An Easy-to-Implement Numerical Method for Quantifying Time-Dependent Mudcake Effects on Near-Wellbore Stresses
,”
J. Pet. Sci. Eng.
,
164
,
501
514
. 10.1016/j.petrol.2018.01.051
35.
Ravaji
,
B.
,
Mashadizade
,
S.
, and
Hashemi
,
A.
,
2018
, “
Introducing Optimized Validated Meshing System for Wellbore Stability Analysis Using 3d Finite Element Method
,”
J. Nat. Gas Sci. Eng.
,
53
, pp.
74
82
. 10.1016/j.jngse.2018.02.031
36.
Islam
,
M. A.
,
Skalle
,
P.
,
Al-Ajmi
,
A. M.
, and
Soreide
,
O. K.
,
2010
, “
Stability Analysis in Shale Through Deviated Boreholes Using the Mohr and Mogi-Coulomb Failure Criteria
,”
44th US Rock Mechanics Symposium and 5th US–Canada Rock Mechanics Symposium
,
Salt Lake City, UT
,
June 28–30
,
ARMA Paper No.ARMA-10-432
. https://www.onepetro.org/conference-paper/ARMA-10-432
37.
Shi
,
X.
,
Cai
,
W.
,
Meng
,
Y.
,
Li
,
G.
, and
Li
,
J.
,
2015
, “
Wellbore Stability Analysis Based on a New Strength Criterion
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
1005
1015
. 10.1016/j.jngse.2015.09.050
38.
Jaeger
,
J. C.
,
1960
, “
Shear Failure of Anisotropic Rocks
,”
Geol. Mag.
,
97
(
1
), pp.
65
72
. 10.1017/S0016756800061100
39.
Mao
,
H.
, and
Yang
,
C.
,
2005
, “
Study on Effects of Discontinuities on Mechanical Characters of Slate
,”
Chin. J. Rock Mech. Eng.
,
24
(
20
), pp.
3651
3656
. 10.3321/j.issn:1000-6915.2005.20.008
40.
Hoek
,
E.
, and
Brown
,
E. T.
,
1980
, “
Empirical Strength Criterion for Rock Masses
,”
J. Geotech. Eng. Div.
,
106
(
9
), pp.
1013
1035
. 10.1016/0148-9062(81)90766-X
41.
Hoek
,
E.
, and
Brown
,
E. T.
,
1997
, “
Practical Estimates of Rock Mass Strength
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
8
), pp.
1165
1186
.10.1016/S1365-1609(97)80069-X
42.
Hoek
,
E.
,
Carranza-Torres
,
C.
, and
Corkum
,
B.
,
2002
, “
Hoek-Brown Failure Criterion–2002 Edition
,”
the 5th North American Rock Mechanics Symposium
,
Toronto, Canada
, Vol.
1
, pp.
267
273
. https://www.rocscience.com/assets/resources/learning/ hoek/Hoek-Brown-Failure-Criterion-2002.pdf.
43.
Shi
,
X.
,
Yang
,
X.
,
Meng
,
Y.
, and
Li
,
G.
,
2016
, “
Modified Hoek–Brown Failure Criterion for Anisotropic Rocks
,”
Environ. Earth Sci.
,
75
(
11
), p.
995
.10.1007/s12665-016-5810-3
44.
Ramamurthy
,
T.
,
1993
, “
Strength and Modulus Responses of Anisotropic Rocks
,”
Compr. Rock Eng.
,
1
(
13
), pp.
313
329
. https://www.mendeley.com/research-papers/strength-modulus-responses-anisotropic-rocks/
45.
Behrestaghi
,
M. H. N.
,
Seshagiri Rao
,
K.
, and
Ramamurthy
,
T.
,
1996
, “
Engineering Geological and Geotechnical Responses of Schistose Rocks From dam Project Areas in India
,”
Eng. Geol.
,
44
(
14
), pp.
183
201
.10.1016/S0013-7952(96)00069-5
46.
Nasseri
,
M. H. B.
,
Rao
,
K. S.
, and
Ramamurthy
,
T.
,
2003
, “
Anisotropic Strength and Deformational Behavior of Himalayan Schists
,”
Int. J. Rock Mech. Min. Sci.
,
40
(
1
), pp.
3
23
. 10.1016/S1365-1609(02)00103-X
47.
Shen
,
J.
,
Jimenez
,
R.
,
Karakus
,
M.
, and
Xu
,
C.
,
2014
, “
A Simplified Failure Criterion for Intact Rocks Based on Rock Type and Uniaxial Compressive Strength
,”
Rock Mech. Rock Eng.
,
47
(
2
), pp.
357
369
. 10.1007/s00603-013-0408-5
48.
Mclamore
,
R.
, and
Gray
,
K. E.
,
1967
, “
The Mechanical Behavior of Anisotropic Sedimentary Rocks
,”
J. Eng. Ind.
,
89
(
1
), pp.
62
73
. 10.1115/1.3610013
49.
Fjӕr
,
E.
,
Holt
,
R.
,
Horsrud
,
P.
,
Raaen
,
A.
, and
Risnes
,
R.
,
2008
,
Petroleum Related Rock Mechanics
, 2nd ed.,
Elsevier
,
Oxford, UK
,
Chap. 4
, pp.
145
150
.
50.
Jin
,
Y.
,
Chen
,
M.
,
Liu
,
G.
, and
Li
,
J.
,
1999
, “
Analysis on Borehole Stability of Weak-Face Formation in Directional Wells
,”
J. Univ. Pet., China Nat. Sci. ed.
,
23
(
4
), pp.
33
35
. 10.3321/j.issn:1000-5870.1999.04.009
You do not currently have access to this content.