Abstract

In this paper, techniques have been developed to interpret three-phase relative permeability and water–oil capillary pressure simultaneously in a tight carbonate reservoir from numerically simulating wireline formation tester (WFT) measurements. A high-resolution cylindrical near-wellbore model is built based on a set of pressures and flow rates collected by dual packer WFT in a tight carbonate reservoir. The grid quality is validated, the effective thickness of the WFT measurements is examined, and the effectiveness of the techniques is confirmed prior to performing history matching for both the measured pressure drawdown and buildup profiles. Water–oil relative permeability, oil–gas relative permeability, and water–oil capillary pressure are interpreted based on power-law functions and under the assumption of a water-wet reservoir and an oil-wet reservoir, respectively. Subsequently, three-phase relative permeability for the oil phase is determined using the modified Stone II model. Both the relative permeability and the capillary pressure of a water–oil system interpreted under an oil-wet condition match well with the measured relative permeability and capillary pressure of a similar reservoir rock type collected from the literature, while the relative permeability of an oil–gas system and the three-phase relative permeability bear a relatively high uncertainty. Not only is the reservoir determined as oil-wet but also the initial oil saturation is found to impose an impact on the interpreted water relative permeability under an oil-wet condition. Changes in water and oil viscosities and mud filtrate invasion depth affect the range of the movable fluid saturation of the interpreted water–oil relative permeabilities.

References

References
1.
Schlumberger
,
2002
, “
MDT Modular Formation Dynamics Tester, Quality Fluid Samples and Highly Accurate Reservoir Pressures
,”
SMP-5124 Copyright
,
June
.
2.
Kuchuk
,
F. J.
,
Ramakrishnan
,
T. S.
, and
Dave
,
Y.
,
1994
, “
Interpretation of Wireline Formation Tester Packer and Probe Pressures
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 25–28
,
Paper SPE 28404
.
3.
Frimann-Dahl
,
C.
,
Irvine-Fortescue
,
J.
,
Rokke
,
E.
,
Vik
,
S.
, and
Wahl
,
O.
,
1998
, “
Formation Testers Vs. DST—The Cost Effective Use of Transient Analysis to Get Reservoir Parameters
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 27–30
,
Paper SPE 48962
.
4.
Jackson
,
R. R.
,
Banerjee
,
R.
, and
Thambynayagam
,
R. K. M.
,
2003
, “
An Integrated Approach to Interval Pressure Transient Test Analysis Using Analytical and Numerical Methods
,”
Presented at the SPE Middle East Oil Show
,
Bahrain
,
June 9–12
,
Paper SPE 81515
.
5.
Cantini
,
S.
,
Baldini
,
D.
,
Beretta
,
E.
,
Loi
,
D.
, and
Mazzoni
,
S.
,
2013
, “
Reservoir Permeability From Wireline Formation Testers
,”
Presented at the EAGE Annual Conference & Exhibition Incorporating SPE EUROPEC
,
London
,
June 10–13
,
Paper SPE 164924
.
6.
Goode
,
P. A.
, and
Thambynayagam
,
R. K. M.
,
1996
, “
Influence of an Invaded Zone on a Multiprobe Formation Tester
,”
SPE Form. Eval.
,
11
(
1
), pp.
31
40
. 10.2118/23030-PA
7.
Gok
,
I. M.
,
Onur
,
M.
,
Hegeman
,
P. S.
, and
Kuchuk
,
F. J.
,
2006
, “
Effect of an Invaded Zone on Pressure-Transient Data From Multiprobe and Packer-Probe Wireline Formation Testers
,”
SPE Reservoir Eval. Eng.
,
9
(
1
), pp.
39
49
. 10.2118/84093-PA
8.
Alpak
,
F. O.
,
Elshahawi
,
H.
,
Hashem
,
M. N.
, and
Mullins
,
O. C.
,
2008
, “
Compositional Modeling of Oil-Based-Mud-Filtrate Cleanup During Wireline Formation Tester Sampling
,”
SPE Reservoir Eval. Eng.
,
11
(
2
), pp.
219
232
. 10.2118/100393-PA
9.
Malik
,
M.
,
Dindoruk
,
B.
,
Elshahawi
,
H.
, and
Torres-Verdin
,
C.
,
2010
, “
Numerical Investigation of Oil-Base Mud Contamination in Condensates: From Cleanup to Sample Quality
,”
J. Nat. Gas Sci. Eng.
,
2
(
2
), pp.
69
78
. 10.1016/j.jngse.2010.03.001
10.
Al-Harthi
,
M.
,
Kelly
,
F.
,
Alenezi
,
F. N.
, and
Soleiman
,
W.
,
2014
, “
Differentiating Between Oil-Based Mud Filtrate and Multiphase Formation Fluids Using Wireline Formation Testing Techniques: Case Studies From Saudi Arabia
,”
Presented at the International Petroleum Technology Conference
,
Doha, Qatar
,
Jan. 19–22
,
Paper IPTC 17391
.
11.
Cig
,
K.
,
Ayan
,
C.
,
Kristensen
,
M.
, and
Mackay
,
E.
,
2015
, “
Numerical Modeling of In-Situ Relative Permeability and Capillary Pressure From Inversion of Wireline Formation Tester Data
,”
Presented at the SPE/EUROPEC
,
Madrid
,
June 1–4
,
Paper SPE 174381
.
12.
Zhang
,
Y.
, and
Yang
,
D.
,
2014
, “
Estimation of Relative Permeability and Capillary Pressure for Tight Formations by Assimilating Field Production Data
,”
Inverse Prob. Sci. Eng.
,
22
(
7
), pp.
1150
1175
. 10.1080/17415977.2013.856899
13.
Angeles
,
R.
,
Torres-Verdín
,
C.
,
Lee
,
H.
,
Alpak
,
F. O.
, and
Sheng
,
J. J.
,
2007
, “
Estimation of Permeability and Permeability Anisotropy From Straddle-Packer Formation-Tester Measurements Based on the Physics of Two-Phase Immiscible Flow and Invasion
,”
SPE J.
,
12
(
3
), pp.
339
354
. 10.2118/95897-PA
14.
Angeles
,
R.
,
Torres-Verdín
,
C.
,
Hadibeik
,
A.
, and
Sepehrnoori
,
K.
,
2010
, “
Estimation of Capillary Pressure and Relative Permeability From Formation-Tester Measurements Using Design of Experiment and Data-Weighing Inversion: Synthetic and Field Examples
,”
J. Pet. Sci. Eng.
,
75
(
1
), pp.
19
32
. 10.1016/j.petrol.2010.10.006
15.
Yang
,
M.
, and
Yang
,
D.
,
2016
, “
Permeability Interpretation From Wireline Formation Testing Measurements With Consideration of Effective Thickness
,”
Petrophysics
,
57
(
3
), pp.
251
269
.
16.
Yang
,
M.
,
Yang
,
D.
, and
Chen
,
A.
,
2018
, “
Interpretation of Formation Permeability and Pressure Responses From Wirelilne Formation Testing With Consideration of Interlayer
,”
Interpretation
,
6
(
4
), pp.
T835
T847
. 10.1190/INT-2017-0087.1
17.
Cao
,
R.
,
Wang
,
Y.
,
Cheng
,
L.
,
Ma
,
Y. Z.
,
Tian
,
X.
, and
An
,
N.
,
2016
, “
A New Model for Determining the Effective Permeability of Tight Formation
,”
Transp. Porous Media
,
112
(
1
), pp.
21
37
. 10.1007/s11242-016-0623-0
18.
Liu
,
G.
,
Bai
,
Y.
,
Gu
,
D.
,
Lu
,
Y.
, and
Yang
,
D.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight Oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
. 10.1306/0108181613217061
19.
Schembre
,
J. M.
, and
Kovscek
,
A. R.
,
2006
, “
Estimation of Dynamic Relative Permeability and Capillary Pressure From Countercurrent Imbibition Experiments
,”
Transp. Porous Media
,
65
(
1
), pp.
31
51
. 10.1007/s11242-005-6092-5
20.
Zhang
,
Y.
,
Song
,
C.
, and
Yang
,
D.
,
2016
, “
A Damped Iterative EnKF Method to Estimate Relative Permeability and Capillary Pressure for Tight Formations From Displacement Experiments
,”
Fuel
,
167
, pp.
306
315
. 10.1016/j.fuel.2015.11.040
21.
Tian
,
L.
,
Feng
,
B.
,
Zheng
,
S.
,
Gu
,
D.
,
Ren
,
X.
, and
Yang
,
D.
,
2019
, “
Performance Evaluation of Gas Production With Consideration of Dynamic Capillary Pressure in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022902
. 10.1115/1.4041410
22.
Hassler
,
G. L.
, and
Brunner
,
E.
,
1945
, “
Measurement of Capillary Pressures in Small Core Samples
,”
Trans. AIME
,
160
(
1
), pp.
114
123
. 10.2118/945114-G
23.
O’Meara
,
D. J.
, Jr.
, and
Vinegar
,
H. J.
,
1990
, “
Method for Determining Capillary Pressure and Relative Permeability by Imaging
,” Patent No. US4893504A,
Shell Oil Co.
24.
Egermann
,
P.
,
Lombard
,
J. M.
, and
Bretonnier
,
P.
,
2006
, “
A Fast and Accurate Method to Measure Threshold Capillary Pressure of Caprocks Under Representative Conditions
,”
Presented at the International Symposium of the Society of Core Analysts
,
Trondheim
,
Sept. 12–16
,
Paper SCA2006-07
.
25.
Honarpour
,
M.
, and
Mahmood
,
S. M.
,
1988
, “
Relative-Permeability Measurements: An Overview
,”
J. Pet. Technol.
,
40
(
8
), pp.
963
966
. 10.2118/18565-PA
26.
Newsham
,
K. E.
,
Rushing
,
J. A.
,
Lasswell
,
P. M.
,
Cox
,
J. C.
, and
Blasingame
,
T. A.
,
2004
, “
A Comparative Study of Laboratory Techniques for Measuring Capillary Pressures in Tight Gas Sands
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
,
Paper SPE 89866
.
27.
Jennings
,
J. W.
, Jr.
,
McGregor
,
D. S.
, and
Morse
,
R. A.
,
1988
, “
Simultaneous Determination of Capillary Pressure and Relative Permeability by Automatic History Matching
,”
SPE Form. Eval.
,
3
(
2
), pp.
322
328
. 10.2118/14418-PA
28.
Yznaga
,
R. J. A.
,
Quintero
,
L. F.
,
Negm
,
E.
,
Arevalo
,
F.
, and
Soleiman
,
W.
,
2017
, “
Uncertainties Associated With the Interpretation and Estimation of Relative Permeabilities Using In-Situ Formation Tester Measurements
,”
Presented at the SPE Reservoir Characterisation and Simulation Conference and Exhibition
,
Abu Dhabi
,
May 8–10
,
Paper SPE 186084
.
29.
Chardaire-Riviere
,
C.
,
Chavent
,
G.
,
Jaffre
,
J.
,
Liu
,
J.
, and
Bourbiaux
,
B. J.
,
1992
, “
Simultaneous Estimation of Relative Permeabilities and Capillary Pressure
,”
SPE Form. Eval.
,
7
(
4
), pp.
283
289
. 10.2118/19680-PA
30.
Fan
,
Z.
,
Yang
,
D.
,
Chai
,
D.
, and
Li
,
X.
,
2019
, “
Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model Using a Modified Iterative Ensemble Smoother
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022901
. 10.1115/1.4041406
31.
Kulkarni
,
R.
,
Watson
,
A. T.
, and
Nordtvedt
,
J. E.
,
1998
, “
Estimation of Porous Media Flow Functions Using NMR Imaging Data
,”
Magn. Reson. Imaging
,
16
(
5–6
), pp.
707
709
. 10.1016/S0730-725X(98)00017-4
32.
Zhang
,
Y.
,
Li
,
H.
, and
Yang
,
D.
,
2012
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure Using Ensemble-Based History Matching Techniques
,”
Transp. Porous Media
,
94
(
1
), pp.
259
276
. 10.1007/s11242-012-0003-3
33.
Eydinov
,
D.
,
Gao
,
G.
,
Li
,
G.
, and
Reynolds
,
A. C.
,
2009
, “
Simultaneous Estimation of Relative Permeability and Porosity/Permeability Fields by History Matching Production Data
,”
J. Can. Pet. Technol.
,
48
(
12
), pp.
13
25
. 10.2118/132159-PA
34.
Shahverdi
,
H.
, and
Sohrabi
,
M.
,
2012
, “
Three-Phase Relative Permeability and Hysteresis Model for Simulation of Water Alternating Gas (WAG) Injection
,”
Presented at the SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 14–18
,
Paper SPE 152218
.
35.
Waid
,
M. C.
,
Proett
,
M. A.
,
Chen
,
C. C.
, and
Ford
,
W. T.
,
1991
, “
Improved Models for Interpreting the Pressure Response of Formation Testers
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 6–9
,
Paper SPE 22754
.
36.
Samaha
,
A.
,
Huang
,
K.
,
Kasap
,
E.
,
Shwe
,
T.
, and
Georgi
,
D.
,
1996
, “
Near Wellbore Permeability and Damage Measurements: Experiments and Numerical Simulations for Interpretation of WFT Data
,”
Presented at the SPE Formation Damage Control Symposium
,
Lafayette, LA
,
Feb. 14–15
,
Paper SPE 35150
.
37.
Akram
,
A. H.
,
Fitzpatrick
,
A. J.
, and
Halford
,
F. R.
,
1999
, “
A Model to Predict Wireline Formation Tester Sample Contamination
,”
SPE Reservoir Eval. Eng.
,
2
(
6
), pp.
499
505
. 10.2118/59559-PA
38.
Wu
,
J.
,
Torres-Verdin
,
C.
,
Sepehrnoori
,
K.
, and
Delshad
,
M.
,
2001
, “
Numerical Simulation of Mud Filtrate Invasion in Deviated Wells
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
30 Sept.–3 Oct.
,
Paper SPE 71739
.
39.
Liu
,
W.
,
Hildebrand
,
M. A.
,
Lee
,
J.
, and
Sheng
,
J.
,
2004
, “
High-Resolution Near-Wellbore Modeling and Its Applications in Formation Testing
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
,
Paper SPE 90767
.
40.
Angeles
,
R.
,
Torres-Verdín
,
C.
,
Sepehrnoori
,
K.
, and
Malik
,
M.
,
2009
, “
Prediction of Formation-Tester Fluid-Sample Quality in Highly-Deviated Wells
,”
Petrophysics
,
50
(
1
), pp.
32
48
.
41.
Wang
,
X.
,
Lei
,
G.
,
Hardikar
,
N. P.
,
DiFoggio
,
R.
, and
Zeng
,
X.
,
2017
, “Effects of Harsh Weather on Delayed Wireline Formation Fluid Sampling,”
Proceedings of the International Field Exploration and Development Conference
,
Z.
Qu
and
J.
Lin
, eds.,
(Springer Series in Geomechanics and Geoengineering), Springer
,
Singapore
, pp.
14
29
.
42.
Bahrami
,
N.
,
Byfield
,
R.
,
Hossain
,
M.
, and
Pourabed
,
H.
,
2015
, “
Effect of Mud Filtrate Invasion on Measurement of Formation Pressure and Determination of Gas-Water Contact Depth in Tight Gas Reservoirs
,”
Presented at the SPE Asia Pacific Unconventional Resources Conference and Exhibition
,
Brisbane
,
Nov. 9–11
,
Paper SPE 176850
.
43.
Lee
,
J.
, and
Michaels
,
J.
,
2000
, “
Enhanced Wireline Formation Tests in Low-Permeability Formations: Quality Control Through Formation Rate Analysis
,”
Presented at the SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium and Exhibition
,
Denver, CO
,
Mar. 12–15
,
Paper SPE 60293
.
44.
Andrews
,
J. T.
,
Bahrami
,
H.
,
Rezaee
,
R.
,
Reza
,
H.
,
Mehmood
,
S.
, and
Salemi
,
H.
,
2012
, “
Effect of Liquid Invasion Damage and Supercharging on Wireline Formation Tester Measurements in Tight Gas Reservoirs
,”
APPEA J.
,
52
(
1
), pp.
627
632
. 10.1071/AJ11051
45.
Alsuwaidi
,
M. E.
,
2015
, “
Lower Bab Member (A0): A Study of Sequence Stratigraphy, Porosity Characterization and Tight Reservoir Development, Abu Dhabi, UAE
,”
PhD dissertation
,
Colorado School of Mines
,
Golden, CO
.
46.
Alsharhan
,
A. S.
,
1985
, “
Depositional Environment, Reservoir Units Evolution, and Hydrocarbon Habitat of Shuaiba Formation, Lower Cretaceous, Abu Dhabi, United Arab Emirates
,”
AAPG Bull.
,
69
(
6
), pp.
899
912
. 10.1306/ad462b19-16f7-11d7-8645000102c1865d
47.
Liu
,
X.
,
Yang
,
D.
, and
Chen
,
A.
,
2020
, “
Simultaneous Interpretation of Relative Permeability and Capillary Pressure for a Naturally Fractured Carbonate Formation From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033001
. 10.1115/1.4045084
48.
Almehaideb
,
R. A.
,
Ashour
,
I.
, and
El-Fattah
,
K. A.
,
2003
, “
Improved K-Value Correlation for UAE Crude Oil Components at High Pressures Using PVT Laboratory Data
,”
Fuel
,
82
(
9
), pp.
1057
1065
. 10.1016/S0016-2361(03)00004-8
49.
Cartellieri
,
A.
,
Pragt
,
J.
, and
Galvan-Sanchez
,
F.
,
2014
, “
Experience and Learning of LWD Sampling in Conventional Reservoirs, Carbonates and Shaly Sands
,”
Presented at the SPWLA 55th Annual Logging Symposium
,
Abu Dhabi
,
May 18–22
,
Paper SPWLA 2014 RR
.
50.
Simpson
,
J. P.
,
1974
, “
Drilling Fluid Filtration Under Stimulated Downhole Conditions
,”
Presented at the SPE Symposium on Formation Damage Control
,
New Orleans, LA
,
30 Jan.–2 Feb.
,
Paper SPE 4779
.
51.
Zhang
,
J.
,
2017
, “
Effects of Porosity and Permeability on Invasion Depth During Drilling Mud-Filtrate Invading Into a Reservoir Dynamically
,”
7th International Conference on Education, Management, Information and Mechanical Engineering
(Advances in Computer Science Research),
Atlantis Press
,
Shenyang, China
, Vol.
76
, pp.
203
206
.
52.
Earlougher
,
R. C.
,
1977
,
Advances in Well Test Analysis
,
Henry L. Doherty Memorial Fund of AIME
,
New York
.
53.
Saad
,
N.
,
Cullick
,
A. S.
, and
Honarpour
,
M. M.
,
1995
, “
Effective Relative Permeability in Scale-Up and Simulation
,”
Presented at SPE the Low Permeability Reservoirs Symposium
,
Denver, CO
,
Mar. 19–22
,
Paper SPE 29592
.
54.
Reynolds
,
A. C.
,
Li
,
R.
, and
Oliver
,
D. S.
,
2004
, “
Simultaneous Estimation of Absolute and Relative Permeability by Automatic History Matching of Three-Phase Flow Production Data
,”
J. Can. Pet. Technol.
,
43
(
3
), pp.
37
46
. 10.2118/04-03-03
55.
Sun
,
X. F.
, and
Mohanty
,
K. K.
,
2005
, “
Estimation of Flow Functions During Drainage Using Genetic Algorithm
,”
SPE J.
,
10
(
4
), pp.
449
457
. 10.2118/84548-PA
56.
Zhang
,
Y.
,
Fan
,
Z.
,
Yang
,
D.
,
Li
,
H.
, and
Patil
,
S.
,
2017
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model With a Damped Iterative-Ensemble-Kalman-Filter Technique
,”
SPE J.
,
22
(
3
), pp.
971
984
. 10.2118/177846-PA
57.
Aziz
,
K.
, and
Settari
,
A.
,
1979
,
Petroleum Reservoir Simulation
,
Elsevier Applied Science
,
Essex
.
58.
Brooks
,
R. H.
, and
Corey
,
A. T.
,
1966
, “
Properties of Porous Media Affecting Fluid Flow
,”
J. Irrig. Drain. Div.
,
92
(
2
), pp.
61
90
.
59.
Huet
,
C. C.
,
Rushing
,
J. A.
,
Newsham
,
K. E.
, and
Blasingame
,
T. A.
,
2005
, “
A Modified Purcell/Burdine Model for Estimating Absolute Permeability From Mercury-Injection Capillary Pressure Data
,”
Presented at the International Petroleum Technology Conference
,
Doha
,
Nov. 21–23
,
Paper IPTC 10994
.
60.
Zhang
,
F.
, and
Yang
,
D.
,
2018
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
. 10.1115/1.4037903
61.
Chilingar
,
G. V.
, and
Yen
,
T. F.
,
1983
, “
Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks, II
,”
Energy Sources
,
7
(
1
), pp.
67
75
. 10.1080/00908318308908076
62.
Zhou
,
D.
, and
Yang
,
D.
,
2017
, “
Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022909
. 10.1115/1.4035513
63.
Dernaika
,
M. R.
,
Basioni
,
M. A.
,
Dawoud
,
A.
,
Kalam
,
M. Z.
, and
Skjæveland
,
S. M.
,
2013
, “
Variations in Bounding and Scanning Relative Permeability Curves With Different Carbonate Rock Types
,”
SPE Reservoir Eval. Eng.
,
16
(
3
), pp.
265
280
. 10.2118/162265-PA
64.
Russell
,
S. D.
,
Akbar
,
M.
,
Vissapragada
,
B.
, and
Walkden
,
G. M.
,
2002
, “
Rock Types and Permeability Prediction From Dipmeter and Image Logs: Shuaiba Reservoir (Aptian), Abu Dhabi
,”
AAPG Bull.
,
86
(
10
), pp.
1709
1732
. 10.1306/61EEDD5A-173E-11D7-8645000102C1865D
65.
Liu
,
G.
,
Meng
,
Z.
,
Li
,
X.
,
Gu
,
D.
,
Yang
,
D.
, and
Yin
,
H.
,
2019
, “
Experimental and Numerical Evaluation of Water Control and Production Increase in a Tight Gas Formation With Polymer
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102903
. 10.1115/1.4043392
66.
Zhang
,
Y.
, and
Yang
,
D.
,
2013
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for Tight Formations Using Ensemble-Based History Matching Method
,”
Comput. Fluids
,
71
, pp.
446
460
. 10.1016/j.compfluid.2012.11.013
67.
Odeh
,
A. S.
,
1959
, “
Effect of Viscosity Ratio on Relative Permeability
,”
Trans. AIME
,
216
, pp.
346
353
.
68.
Buckley
,
S. E.
, and
Leverett
,
M. C.
,
1942
, “
Mechanism of Fluid Displacement in Sands
,”
Trans. AIME
,
146
(
1
), pp.
107
116
. 10.2118/942107-G
You do not currently have access to this content.