Abstract

A robust and pragmatic method has been developed and validated to analytically determine dynamic dispersion coefficients for particles flowing in a parallel-plate fracture, in which gravity settling has been considered due to its significant impact on particle flowing behavior. More specifically, a two-dimensional (2D) advection–diffusion equation together with the initial and boundary conditions has been formulated to describe the flow behavior of finite-sized particles on the basis of coupling the Poiseuille flow with vertical settling. Meanwhile, three types of instantaneous source conditions (i.e., point source, uniform line source, and volumetric line source) have been considered. Explicit expressions, which can directly and time-efficiently calculate dynamic dispersion coefficient, have been derived through the moment analysis and the Green’s function method. By performing the simulation based on the random walk particle tracking (RWPT) algorithm, the newly developed model has been verified to determine particle dispersion coefficients agreeing well with those obtained from the RWPT simulations. It is found that the point source is the most sensitive to gravity effect among different source conditions, while the volumetric line source is affected more than the uniform line source. For particle size larger than its critical value, an increased particle size leads to a decreased asymptotical dispersion coefficient for all the source conditions due to the significant gravity effect, while gravity positively affects the dispersion coefficient at early times for the point source condition. In addition, average flow velocity positively affects the dispersion coefficient for all the source conditions, while the associated gravity effect is influenced only at early times for the point source condition.

References

1.
Doshi
,
M. R.
,
Daiya
,
P. M.
, and
Gill
,
W. N.
,
1978
, “
Three Dimensional Laminar Dispersion in Open and Closed Rectangular Conduits
,”
Chem. Eng. Sci.
,
33
(
7
), pp.
795
804
. 10.1016/0009-2509(78)85168-9
2.
McDowell-Boyer
,
L. M.
,
Hunt
,
J. R.
, and
Sitar
,
N.
,
1986
, “
Particle Transport Through Porous Media
,”
Water Resour. Res.
,
22
(
13
), pp.
1901
1921
. 10.1029/WR022i013p01901
3.
Arya
,
A.
,
Hewett
,
T. A.
,
Larson
,
R. G.
, and
Lake
,
L. W.
,
1988
, “
Dispersion and Reservoir Heterogeneity
,”
SPE Reservoir Eng.
,
3
(
1
), pp.
139
148
. 10.2118/14364-PA
4.
Hu
,
Z.
,
Luo
,
X.
, and
Luo
,
K. H.
,
2002
, “
Numerical Simulation of Particle Dispersion in a Spatially Developing Mixing Layer
,”
Theor. Comput. Fluid Dyn.
,
15
(
6
), pp.
403
420
. 10.1007/s00162-002-0058-9
5.
Delgado
,
J. M. P. Q.
,
2007
, “
Longitudinal and Transverse Dispersion in Porous Media
,”
Chem. Eng. Res. Des.
,
85
(
9
), pp.
1245
1252
. 10.1205/cherd07017
6.
Rhodes
,
M.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2009
, “
A Rigorous Pore-to-Field-Scale Simulation Method for Single-Phase Flow Based on Continuous-Time Random Walks
,”
SPE J.
,
14
(
1
), pp.
88
94
. 10.2118/106434-PA
7.
Hashemi
,
R.
,
Nassar
,
N. N.
, and
Pereira-Almao
,
P.
,
2012
, “
Transport Behavior of Multimetallic Ultradispersed Nanoparticles in an Oil-Sands-Packed Bed Column at a High Temperature and Pressure
,”
Energy Fuels
,
26
(
3
), pp.
1645
1655
. 10.1021/ef201939f
8.
Yu
,
J.
,
An
,
C.
,
Mo
,
D.
,
Liu
,
N.
, and
Lee
,
R. L.
,
2012
, “
Study of Adsorption and Transportation Behavior of Nanoparticles in Three Different Porous Media
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 14–18
,
Paper SPE 153337
.
9.
Zhang
,
H.
,
Nikolov
,
A.
, and
Wasan
,
D.
,
2014
, “
Enhanced Oil Recovery (EOR) Using Nanoparticle Dispersions: Underlying Mechanism and Imbibition Experiments
,”
Energy Fuels
,
28
(
5
), pp.
3002
3009
. 10.1021/ef500272r
10.
Meng
,
X.
, and
Yang
,
D.
,
2016
, “
Determination of Dynamic Dispersion Coefficient for Particles Flowing in a Parallel-Plate Fracture
,”
Colloids Surf., A
,
509
, pp.
259
278
. 10.1016/j.colsurfa.2016.08.019
11.
Meng
,
X.
, and
Yang
,
D.
,
2017
, “
Determination of Dynamic Dispersion Coefficients for Passive and Reactive Particles Flowing in a Circular Tube
,”
Colloids Surf., A
,
524
, pp.
96
110
. 10.1016/j.colsurfa.2017.04.030
12.
Meng
,
X.
, and
Yang
,
D.
,
2018
, “
Dynamic Dispersion Coefficient of Solutes Flowing in a Circular Tube and a Tube-Bundle Model
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012903
. 10.1115/1.4037374
13.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
. 10.1115/1.4041929
14.
Hashemi
,
R.
,
Nassar
,
N. N.
, and
Pereira Almao
,
P.
,
2014
, “
Nanoparticle Technology for Heavy Oil In-Situ Upgrading and Recovery Enhancement: Opportunities and Challenges
,”
Appl. Energy
,
133
, pp.
374
387
. 10.1016/j.apenergy.2014.07.069
15.
Roustaei
,
A.
,
Moghadasi
,
J.
,
Bagherzadeh
,
H.
, and
Shahrabadi
,
A.
,
2012
, “
An Experimental Investigation of Polysilicon Nanoparticles’ Recovery Efficiencies Through Changes in Interfacial Tension and Wettability Alteration
,”
SPE International Oilfield Nanotechnology Conference
,
Noordwijk, The Netherlands
,
June 12–14
,
Paper SPE 156976
.
16.
Salem Ragab
,
A. M.
, and
Hannora
,
A. E.
,
2015
, “
A Comparative Investigation of Nano Particle Effects for Improved Oil Recovery—Experimental Work
,”
SPE Kuwait Oil and Gas Show and Conference
,
Mishref, Kuwait
,
Oct. 11–14
,
Paper SPE 175395
.
17.
Bera
,
A.
, and
Belhaj
,
H.
,
2016
, “
Application of Nanotechnology by Means of Nanoparticles and Nanodispersions in Oil Recovery: A Comprehensive Review
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1284
1309
. 10.1016/j.jngse.2016.08.023
18.
Ding
,
Y.
,
Zheng
,
S.
,
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072904
. 10.1115/1.4042238
19.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
,
2003
, “
Spreading of Nanofluids on Solids
,”
Nature
,
423
(
6936
), pp.
156
159
. 10.1038/nature01591
20.
Hendraningrat
,
L.
, and
Torsæter
,
O.
,
2014
, “
Understanding Fluid-Fluid and Fluid-Rock Interactions in the Presence of Hydrophilic Nanoparticles at Various Conditions
,”
SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Adelaide, Australia
,
Oct. 14–16
,
Paper SPE 171407
.
21.
El-Diasty
,
A. I.
, and
Aly
,
A. M.
,
2015
, “
Understanding the Mechanism of Nanoparticles Applications in Enhanced Oil Recovery
,”
SPE North Africa Technical Conference and Exhibition
,
Cairo, Egypt
,
Sept. 14–16
,
Paper SPE 175806
.
22.
Tarek
,
M.
,
2015
, “
Investigating Nano-Fluid Mixture Effects to Enhance Oil Recovery
,”
SPE International Student Paper Contest at the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
,
Paper SPE 178739
.
23.
Zhang
,
T.
,
Roberts
,
M. R.
,
Bryant
,
S. L.
, and
Huh
,
C.
,
2009
, “
Foams and Emulsions Stabilized With Nanoparticles for Potential Conformance Control Applications
,”
SPE International Symposium on Oilfield Chemistry
,
the Woodlands, TX
,
Apr. 20–22
,
Paper SPE 121744
.
24.
Aminzadeh-goharrizi
,
B.
,
Huh
,
C.
,
Bryant
,
S. L.
,
DiCarlo
,
D. A.
, and
Roberts
,
M.
,
2012
, “
Effect of Nanoparticles on Flow Alteration During CO2 Injection
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
,
Paper SPE 160052
.
25.
Alomair
,
O. A.
,
Matar
,
K. M.
, and
Alsaeed
,
Y. H.
,
2014
, “
Nanofluids Application for Heavy Oil Recovery
,”
SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Adelaide, Australia
,
Oct. 14–16
,
Paper SPE 171539
.
26.
Li
,
S.
,
Li
,
Z.
, and
Wang
,
P.
,
2016
, “
Experimental Study of the Stabilization of CO2 Foam by Sodium Dodecyl Sulfate and Hydrophobic Nanoparticles
,”
Ind. Eng. Chem. Res.
,
55
(
5
), pp.
1243
1253
. 10.1021/acs.iecr.5b04443
27.
Zhang
,
L.
,
Kang
,
J.
,
Zhang
,
Y.
,
Zhang
,
P.
,
Ren
,
S.
,
Khataniar
,
S.
, and
Guo
,
X.
,
2018
, “
Experimental Investigation of Amine-Surfactant CO2 Foam Stability Enhanced by Silica Nanoparticles
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112902
. 10.1115/1.4040205
28.
Shokrlu
,
Y. H.
, and
Babadagli
,
T.
,
2011
, “
Transportation and Interaction of Nano and Micro Size Metal Particles Injected to Improve Thermal Recovery of Heavy Oil
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 30–Nov. 2
,
Paper SPE 146661
.
29.
Hamedi Shokrlu
,
Y.
, and
Babadagli
,
T.
,
2013
, “
In-Situ Upgrading of Heavy Oil/Bitumen During Steam Injection by Use of Metal Nanoparticles: A Study on In-Situ Catalysis and Catalyst Transportation
,”
SPE Reservoir Eval. Eng.
,
16
(
3
), pp.
333
344
. 10.2118/146661-PA
30.
Kang
,
R.
, and
Liu
,
H.
,
2019
, “
A Mechanistic Model of Predicting Solid Particle Erosion on the Symmetry Plane of Elbows for Annular Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032907
. 10.1115/1.4042232
31.
Wang
,
Z.
,
Qiu
,
Y.
,
Guo
,
P.
,
Du
,
J.
,
Liu
,
H.
,
Hu
,
Y.
, and
Zeng
,
F.
,
2019
, “
Experimental Investigation of the Damage Mechanisms of Drilling Mud in Fractured Tight Gas Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092907
. 10.1115/1.4043247
32.
Lemon
,
P.
,
Zeinijahromi
,
A.
,
Bedrikovetsky
,
P.
, and
Shahin
,
I.
,
2011
, “
Effects of Injected-Water Salinity on Waterflood Sweep Efficiency Through Induced Fines Migration
,”
J. Can. Pet. Technol.
,
50
(
9
), pp.
82
94
. 10.2118/140141-PA
33.
Zeinijahromi
,
A.
,
Nguyen
,
T. K. P.
, and
Bedrikovetsky
,
P.
,
2013
, “
Mathematical Model for Fines-Migration-Assisted Waterflooding With Induced Formation Damage
,”
SPE J.
,
18
(
3
), pp.
518
533
. 10.2118/144009-PA
34.
Sheng
,
J. J.
,
2014
, “
Critical Review of Low-Salinity Waterflooding
,”
J. Pet. Sci. Eng.
,
120
, pp.
216
224
. 10.1016/j.petrol.2014.05.026
35.
Clark
,
P. E.
,
2006
, “
Transport of Proppant in Hydraulic Fractures
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 24–27
,
Paper SPE 103167
.
36.
Barati
,
R.
, and
Liang
,
J. T.
,
2014
, “
A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells
,”
J. Appl. Polym. Sci.
,
131
(
16
), p.
40735
. 10.1002/app.40735
37.
Liang
,
F.
,
Sayed
,
M.
,
Al-Muntasheri
,
G. A.
,
Chang
,
F. F.
, and
Li
,
L.
,
2016
, “
A Comprehensive Review on Proppant Technologies
,”
Petroleum
,
2
(
1
), pp.
26
39
. 10.1016/j.petlm.2015.11.001
38.
Allain
,
C.
,
Cloitre
,
M.
, and
Parisse
,
F.
,
1996
, “
Settling by Cluster Deposition in Aggregating Colloidal Suspensions
,”
J. Colloid Interface Sci.
,
178
(
2
), pp.
411
416
. 10.1006/jcis.1996.0135
39.
Lattuada
,
E.
,
Buzzaccaro
,
S.
, and
Piazza
,
R.
,
2016
, “
Colloidal Swarms Can Settle Faster Than Isolated Particles: Enhanced Sedimentation Near Phase Separation
,”
Phys. Rev. Lett.
,
116
(
3
), p.
038301
. 10.1103/PhysRevLett.116.038301
40.
Reno
,
M. D.
,
James
,
S. C.
, and
Altman
,
S. J.
,
2006
, “
Colloid Dispersion in a Uniform-Aperture Fracture
,”
J. Colloid Interface Sci.
,
300
(
1
), pp.
383
390
. 10.1016/j.jcis.2006.03.067
41.
Zhang
,
T.
,
2012
, “
Modeling of Nanoparticle Transport in Porous Media
,”
Ph.D. dissertation
,
University of Texas at Austin
,
Austin, TX
.
42.
Sasidharan
,
S.
,
Torkzaban
,
S.
,
Bradford
,
S. A.
,
Dillon
,
P. J.
, and
Cook
,
P. G.
,
2014
, “
Coupled Effects of Hydrodynamic and Solution Chemistry on Long-Term Nanoparticle Transport and Deposition in Saturated Porous Media
,”
Colloids Surf., A
,
457
, pp.
169
179
. 10.1016/j.colsurfa.2014.05.075
43.
Taylor
,
G. I.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through A Tube
,”
Proc. R. Soc. A
,
219
(
1137
), pp.
186
203
. 10.1098/rspa.1953.0139
44.
Taylor
,
G. I.
,
1954
, “
Conditions Under Which Dispersion of a Solute in a Stream of Solvent Can be Used to Measure Molecular Diffusion
,”
Proc. R. Soc. A
,
225
(
1163
), pp.
473
477
. 10.1098/rspa.1954.0216
45.
Ekambara
,
K.
, and
Joshi
,
J. B.
,
2004
, “
Axial Mixing in Laminar Pipe Flows
,”
Chem. Eng. Sci.
,
59
(
18
), pp.
3929
3944
. 10.1016/j.ces.2004.05.025
46.
Berkowitz
,
B.
, and
Zhou
,
J.
,
1996
, “
Reactive Solute Transport in a Single Fracture
,”
Water Resour. Res.
,
32
(
4
), pp.
901
913
. 10.1029/95WR03615
47.
James
,
S. C.
, and
Chrysikopoulos
,
C. V.
,
2003
, “
Effective Velocity and Effective Dispersion Coefficient for Finite-Sized Particles Flowing in a Uniform Fracture
,”
J. Colloid Interface Sci.
,
263
(
1
), pp.
288
295
. 10.1016/S0021-9797(03)00254-6
48.
Dentz
,
M.
, and
Carrera
,
J.
,
2007
, “
Mixing and Spreading in Stratified Flow
,”
Phys. Fluids
,
19
(
1
), p.
017107
. 10.1063/1.2427089
49.
Wang
,
L.
,
Cardenas
,
M. B.
,
Deng
,
W.
, and
Bennett
,
P. C.
,
2012
, “
Theory for Dynamic Longitudinal Dispersion in Fractures and Rivers With Poiseuille Flow
,”
Geophys. Res. Lett.
,
39
(
5
), p.
L05401
. 10.1029/2011gl050831
50.
James
,
S. C.
, and
Chrysikopoulos
,
C. V.
,
1999
, “
Transport of Polydisperse Colloid Suspensions in a Single Fracture
,”
Water Resour. Res.
,
35
(
3
), pp.
707
718
. 10.1029/1998WR900059
51.
Salamon
,
P.
,
Fernàndez-Garcia
,
D.
, and
Gómez-Hernández
,
J. J.
,
2006
, “
Modeling Mass Transfer Processes Using Random Walk Particle Tracking
,”
Water Resour. Res.
,
42
(
11
), p.
W11417
. 10.1029/2006WR004927
52.
Zheng
,
Q.
,
Dickson
,
S. E.
, and
Guo
,
Y.
,
2009
, “
Differential Transport and Dispersion of Colloids Relative to Solutes in Single Fractures
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
140
151
. 10.1016/j.jcis.2009.07.002
53.
Bechtold
,
M.
,
Vanderborght
,
J.
,
Ippisch
,
O.
, and
Vereecken
,
H.
,
2011
, “
Efficient Random Walk Particle Tracking Algorithm for Advective-Dispersive Transport in Media With Discontinuous Dispersion Coefficients and Water Contents
,”
Water Resour. Res.
,
47
(
10
), p.
W10526
. 10.1029/2010WR010267
54.
Khirevich
,
S.
,
Höltzel
,
A.
, and
Tallarek
,
U.
,
2013
, “
Validation of Pore-Scale Simulations of Hydrodynamic Dispersion in Random Sphere Packings
,”
Commun. Comput. Phys.
,
13
(
3
), pp.
801
822
. 10.4208/cicp.361011.260112s
55.
Wang
,
L.
, and
Cardenas
,
M. B.
,
2015
, “
An Efficient Quasi-3D Particle Tracking-Based Approach for Transport Through Fractures With Application to Dynamic Dispersion Calculation
,”
J. Contam. Hydrol.
,
179
, pp.
47
54
. 10.1016/j.jconhyd.2015.05.007
56.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
. 10.1080/02786829208959550
57.
Liyanage
,
D. D.
,
Thamali
,
R. J.
,
Kumbalatara
,
A. A. K.
,
Weliwita
,
J. A.
, and
Witharana
,
S.
,
2016
, “
An Analysis of Nanoparticle Settling Times in Liquids
,”
J. Nanomater.
,
2016
(
44
), pp.
1
7
. 10.1155/2016/7061838
58.
Reejhsinghani
,
N. S.
,
Gill
,
W. N.
, and
Barduhn
,
A. J.
,
1966
, “
Laminar Dispersion in Capillaries: Part III. Experiments in Horizontal Tubes Including Observations on Natural Convection Effects
,”
AIChE J.
,
12
(
5
), pp.
916
921
. 10.1002/aic.690120515
59.
Novotny
,
E. J.
,
1977
, “
Proppant Transport
,”
SPE Annual Fall Technical Conference and Exhibition
,
Denver, CO
,
Oct. 9–12
,
Paper SPE 6813
.
60.
Clark
,
P. E.
, and
Quadir
,
J. A.
,
1981
, “
Prop Transport in Hydraulic Fractures: A Critical Review of Particle Settling Velocity Equations
,”
SPE/DOE Low Permeability Gas Reservoirs Symposium
,
Denver, CO
,
May 27–29
,
Paper SPE 9866
.
61.
James
,
S. C.
, and
Chrysikopoulos
,
C. V.
,
2011
, “
Monodisperse and Polydisperse Colloid Transport in Water-Saturated Fractures With Various Orientations: Gravity Effects
,”
Adv. Water Res.
,
34
(
10
), pp.
1249
1255
. 10.1016/j.advwatres.2011.06.001
62.
Reimus
,
P. W.
,
1995
, “
The Use of Synthetic Colloids in Tracer Transport Experiments in Saturated Rock Fractures
,”
Ph.D. dissertation
,
Los Alamos National Lab
,
Los Alamos, NM
.
63.
Liu
,
H. H.
,
Bodvarsson
,
G. S.
, and
Pan
,
L.
,
2000
, “
Determination of Particle Transfer in Random Walk Particle Methods for Fractured Porous Media
,”
Water Resour. Res.
,
36
(
3
), pp.
707
713
. 10.1029/1999WR900323
64.
Jung
,
J. Y.
,
Koo
,
J.
, and
Kang
,
Y. T.
,
2013
, “
Model for Predicting the Critical Size of Aggregates in Nanofluids
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
1165
1169
. 10.1007/s12206-013-0224-6
65.
Thomas
,
J. M.
, and
Chrysikopoulos
,
C. V.
,
2007
, “
Experimental Investigation of Acoustically Enhanced Colloid Transport in Water-Saturated Packed Columns
,”
J. Colloid Interface Sci.
,
308
(
1
), pp.
200
207
. 10.1016/j.jcis.2006.12.062
66.
Chrysikopoulos
,
C. V.
, and
Katzourakis
,
V. E.
,
2015
, “
Colloid Particle Size-Dependent Dispersivity
,”
Water Resour. Res.
,
51
(
6
), pp.
4668
4683
. 10.1002/2014WR016094
67.
Polyanin
,
A. D.
,
2002
,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
,
CRC Press
,
Boca Raton, FL
.
68.
Aris
,
R.
,
1956
, “
On the Dispersion of a Solute in a Fluid Flowing Through a Tube
,”
Proc. R. Soc. A
,
235
(
1200
), pp.
67
77
. 10.1098/rspa.1956.0065
69.
Govindaraju
,
R. S.
, and
Das
,
B. S.
,
2007
,
Moment Analysis for Subsurface Hydrologic Applications
,
Springer
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.