Abstract

The co-gasification characteristics of petroleum coke (PC), hydrochar (PS), and their blends with different ratios were studied by using thermogravimetric analysis. The Coats–Redfern model was employed to calculate the gasification activation energies of different samples. The results manifested that the gasification process of PS and blends could be classified into two stages: pyrolysis and char gasification, but for PC, there was only one primary char gasification stage. The activation energy of the pyrolysis stage was significantly smaller than the char gasification stage. In the latter stage, with the increase in the ratio of PS from 20% to 80%, the activation energy was reduced from 114.1 kJ/mol to 82.8 kJ/mol, which indicated that the PS had a significant promoting influence on the PC gasification. The research results can provide a theoretical guiding significance for the efficient use of PS and PC.

References

1.
Leion
,
H.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2007
, “
The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion
,”
Fuel
,
86
(
12–13
), pp.
1947
1958
. 10.1016/j.fuel.2006.11.037
2.
Wang
,
G. W.
,
Zhang
,
J. L.
,
Zhang
,
G. H.
,
Ning
,
X. J.
,
Li
,
X. Y.
,
Liu
,
Z. J.
, and
Guo
,
J.
,
2017
, “
Experimental and Kinetic Studies on Co-Gasification of Petroleum Coke and Biomass Char Blends
,”
Energy
,
131
, pp.
27
40
. 10.1016/j.energy.2017.05.023
3.
Ma
,
S. X.
,
Zhou
,
D. J.
,
Zhang
,
H. S.
,
Weng
,
S. L.
, and
Shao
,
T. M.
,
2019
, “
Modeling and Operational Optimization Based on Energy Hubs for Complex Energy Networks With Distributed Energy Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022002
. 10.1115/1.4041287
4.
Fermoso
,
J.
,
Arias
,
B.
,
Plaza
,
M. G.
,
Pevida
,
C.
,
Rubiera
,
F.
,
Pis
,
J.
,
García-Peña
,
F.
, and
Casero
,
P.
,
2009
, “
High-Pressure Co-Gasification of Coal With Biomass and Petroleum Coke
,”
Fuel. Process. Technol.
,
90
(
7–8
), pp.
926
932
. 10.1016/j.fuproc.2009.02.006
5.
Hakamian
,
K.
,
Anderson
,
K. R.
,
Shafahi
,
M.
, and
Lakeh
,
R. B.
,
2019
, “
Thermal Design and Analysis of a Solid-State Grid-Tied Thermal Energy Storage for Hybrid Compressed Air Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061903
. 10.1115/1.4042917
6.
Nemanova
,
V.
,
Abedini
,
A.
,
Liliedahl
,
T.
, and
Engvall
,
K.
,
2014
, “
Co-Gasification of Petroleum Coke and Biomass
,”
Fuel
,
117
, pp.
870
875
. 10.1016/j.fuel.2013.09.050
7.
Duchesne
,
M. A.
,
Ilyushechkin
,
A. Y.
,
Hughes
,
R. W.
,
Lu
,
D. Y.
,
McCalden
,
D. J.
,
Macchi
,
A.
, and
Anthony
,
E. J.
,
2012
, “
Flow Behaviour of Slags From Coal and Petroleum Coke Blends
,”
Fuel
,
97
, pp.
321
328
. 10.1016/j.fuel.2012.02.019
8.
Liu
,
Z. J.
,
Wang
,
G. W.
,
Zhang
,
J. L.
,
Lee
,
J. Y.
,
Wang
,
H. Y.
,
Sun
,
M. M.
, and
Wang
,
C.
,
2018
, “
Study on CO2 Gasification Reactivity and Structure Characteristics of Carbonaceous Materials From Corex Furnace
,”
Energy Fuels
,
32
(
5
), pp.
6155
6166
. 10.1021/acs.energyfuels.8b00072
9.
Wang
,
Q.
,
Zhang
,
J. L.
,
Wang
,
G. W.
,
Wang
,
H. Y.
, and
Min
,
S. M.
,
2018
, “
Thermal and Kinetic Analysis of Coal With Different Waste Plastics (PVC) in Cocombustion
,”
Energy Fuels
,
32
(
2
), pp.
2145
2155
. 10.1021/acs.energyfuels.7b03268
10.
Wang
,
G. W.
,
Zhang
,
J. L.
,
Zhang
,
G. H.
,
Wang
,
H. Y.
, and
Zhao
,
D.
,
2017
, “
Experiments and Kinetic Modeling for Reduction of Ferric Oxide-Biochar Composite Pellets
,”
ISIJ Int.
,
57
(
8
), pp.
1374
1383
. 10.2355/isijinternational.ISIJINT-2016-630
11.
Wang
,
G. W.
,
Zhang
,
J. L.
,
Huang
,
X.
,
Liang
,
X. H.
,
Ning
,
X. J.
, and
Li
,
R. P.
,
2018
, “
Co-Gasification of Petroleum Coke-Biomass Blended Char With Steam at Temperatures of 1173–1373 K
,”
Appl. Therm. Eng.
,
137
, pp.
678
688
. 10.1016/j.applthermaleng.2018.04.026
12.
Schimmelpfennig
,
S.
,
Müller
,
C.
,
Grünhage
,
L.
,
Koch
,
C.
, and
Kammann
,
C.
,
2014
, “
Biochar, Hydrochar and Uncarbonized Feedstock Application to Permanent Grassland-Effects on Greenhouse Gas Emissions and Plant Growth
,”
Agric. Ecosyst. Environ.
,
191
, pp.
39
52
. 10.1016/j.agee.2014.03.027
13.
Coats
,
A. W.
, and
Redfern
,
J. P.
,
1964
, “
Kinetic Parameters From Thermogravimetric Data
,”
Nature
,
201
(
4914
), pp.
68
69
. 10.1038/201068a0
14.
Ebrahimi-Kahrizsangi
,
R.
, and
Abbasi
,
M. H.
,
2008
, “
Evaluation of Reliability of Coats-Redfern Method for Kinetic Analysis of Non-Isothermal TGA
,”
Trans. Nonferrous Metals Soc. China
,
18
(
1
), pp.
217
221
. 10.1016/S1003-6326(08)60039-4
15.
Urbanovici
,
E.
,
Popescu
,
C.
, and
Segal
,
E.
,
1999
, “
Improved Iterative Version of the Coats-Redfern Method to Evaluate Non-Isothermal Kinetic Parameters
,”
J. Therm. Anal. Calorim.
,
58
(
3
), pp.
683
700
. 10.1023/A:1010125132669
16.
Betancur
,
Y.
,
Sánchez
,
A.
,
Bueno-López
,
A.
, and
López
,
D.
,
2018
, “
Potassium Catalytic Effect on Gasification Reactions of Coal and Coal/Biomass Blends Under Oxy-Combustion Conditions. An Isotopic Study Using 13C18O2
,”
Energy Fuels
,
32
(
2
), pp.
2439
2449
. 10.1021/acs.energyfuels.7b03399
17.
Zhang
,
J. L.
,
Guo
,
J.
,
Wang
,
G. W.
,
Xu
,
T.
,
Chai
,
Y. F.
,
Zheng
,
C. L.
, and
Xu
,
R. S.
,
2016
, “
Kinetics of Petroleum Coke/Biomass Blends During Co-Gasification
,”
Int. J. Min. Met. Mater.
,
23
(
9
), pp.
1001
1010
. 10.1007/s12613-016-1317-x
18.
Wang
,
G. W.
,
Zhang
,
J. L.
,
Shao
,
J. G.
,
Liu
,
Z. J.
,
Wang
,
H. Y.
,
Li
,
X. Y.
,
Zhang
,
P. C.
,
Geng
,
W. W.
, and
Zhang
,
G. H.
,
2016
, “
Experimental and Modeling Studies on CO2 Gasification of Biomass Chars
,”
Energy
,
114
, pp.
143
154
. 10.1016/j.energy.2016.08.002
19.
Wuerth
,
M.
,
Becker
,
M.
,
Ostermeier
,
P.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2019
, “
Development of a Continuous Fluidized Bed Reactor for Thermochemical Energy Storage Application
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070710
. 10.1115/1.4043629
20.
Wang
,
G. W.
,
Zhang
,
J. L.
,
Shao
,
J. G.
,
Li
,
K. J.
, and
Zuo
,
H. B.
,
2015
, “
Investigation of Non-Isothermal and Isothermal Gasification Process of Coal Char Using Different Kinetic Model
,”
Int. J. Min. Sci. Technol.
,
25
(
1
), pp.
15
21
. 10.1016/j.ijmst.2014.11.012
21.
Bai
,
Z. W.
,
Wang
,
Z. Y.
,
Yu
,
G. Y.
,
Yang
,
Y. P.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
. 10.1115/1.4041412
22.
Wang
,
J. G.
,
Gu
,
G. H.
,
Guo
,
W.
,
Zhang
,
H. J.
, and
Yang
,
D. Y.
,
2019
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012907
. 10.1115/1.4040755
You do not currently have access to this content.