Abstract

A novel and strategic green energy production method that utilizes relative wind generated from moving vehicles is presented. A speeding train generates an enormous wake of wind around it, which stocks a substantial amount of kinetic energy. In this study, this freely accessible wind power is harvested by installing a modified savonius wind turbine within the slipstream region of the train. A computer-oriented fluid-solid integrate simulation of wind turbine propelled by train-induced wind is performed by executing all physically realistic boundary conditions. The numerical study is based on open-source CFD toolbox openfoam, and the results were validated against benchmark experimental study. Parametric sensitivity analysis such as optimal turbine performance within the slipstream regime, torque prediction from express trains, two opposite crossing trains, tunnel condition, and turbine wind turbine clusters arrangement has been reported. This study enhances the understanding of the power generation by the turbine from the train slipstream which is not reported in any open literature as far as the authors’ present knowledge goes.

References

1.
Hoel
,
M.
, and
Kverndokk
,
S.
,
1996
, “
Depletion of Fossil Fuels and the Impacts of Global Warming
,”
Resour. Energy Econ.
,
18
(
2
), pp.
115
136
. 10.1016/0928-7655(96)00005-X
2.
Arnell
,
N.
, and
Reynard
,
N.
,
1996
, “
The Effects of Climate Change Due to Global Warming on River Flows in Great Britain
,”
J. Hydrol.
,
183
(
3–4
), pp.
397
424
. 10.1016/0022-1694(95)02950-8
3.
Ewing
,
R.
,
Weber
,
W.
, and
Clinard
,
F.
, Jr.,
1995
, “
Radiation Effects in Nuclear Waste Forms for High-Level Radioactive Waste
,”
Prog. Nucl. Energy
,
29
(
2
), pp.
63
127
. 10.1016/0149-1970(94)00016-Y
4.
Helton
,
J. C.
,
1993
, “
Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal
,”
Reliab. Eng. Syst. Saf.
,
42
(
2–3
), pp.
327
367
. 10.1016/0951-8320(93)90097-I
5.
Archer
,
C. L.
, and
Jacobson
,
M. Z.
,
2005
, “
Evaluation of Global Wind Power
,”
J. Geophys. Res.: Atmos.
,
110
(
D12
), pp.
1
20
. 10.1029/2004JC002625
6.
Collins
,
T.
,
2014
, “
Clean Energy Investments Charge Forward Despite Financial Market Turmoil
.”
7.
Liao
,
Z.
,
2016
, “
The Evolution of Wind Energy Policies in China (1995–2014): An Analysis Based on Policy Instruments
,”
Renewable Sustainable Energy Rev.
,
56
(
1
), pp.
464
472
. 10.1016/j.rser.2015.11.097
8.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
. 10.1016/j.rser.2012.02.056
9.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
. 10.1016/j.rser.2006.05.017
10.
Kamoji
,
M.
,
Kedare
,
S.
, and
Prabhu
,
S.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renewable Energy
,
34
(
3
), pp.
521
529
. 10.1016/j.renene.2008.06.002
11.
Sanusi
,
A.
,
Soeparman
,
S.
,
Wahyudi
,
S.
, and
Yuliati
,
L.
,
2016
, “
Experimental Study of Combined Blade Savonius Wind Turbine
,”
Int. J. Renewable Energy Res. (IJRER)
,
6
(
2
), pp.
614
619
.
12.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
, pp.
287
299
. 10.1016/j.renene.2017.10.067
13.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2019
, “
Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study
,”
ASME J. Energy Res. Technol.
,
142
(
6
), pp.
1
15
.
14.
Johnson
,
T.
,
Dalley
,
S.
, and
Temple
,
J.
,
2004
,
Recent Studies of Train Slipstreams
,
Springer
,
Berlin Heidelberg
, pp.
415
430
.
15.
Casals
,
M.
,
Gangolells
,
M.
,
Forcada
,
N.
,
Macarulla
,
M.
,
Giretti
,
A.
, and
Vaccarini
,
M.
,
2016
, “
SEAM4US: An Intelligent Energy Management System for Underground Stations
,”
Appl. Energy
,
166
, pp.
150
164
. 10.1016/j.apenergy.2016.01.029
16.
Kakran
,
S.
, and
Chanana
,
S.
,
2018
, “
Smart Operations of Smart Grids Integrated With Distributed Generation: A Review
,”
Renewable Sustainable Energy Rev.
,
81
(
Part 1
), pp.
524
535
. 10.1016/j.rser.2017.07.045
17.
Chen
,
T.
,
2008
, “
Power Generation System Utilizing Wind Draft From Vehicular Traffic
,” Google Patents, US Patent 7,427,173.
18.
Taskin
,
S.
,
Dursun
,
B.
, and
Alboyaci
,
B.
,
2009
, “
Performance Assessment of a Combined Solar and Wind System
,”
Arab. J. Sci. Eng.
,
34
, pp.
217
227
.
19.
Jiang
,
Q.
, and
Luparini
,
A. L.
,
2014
, “
T-BOX Wind Power Generator – Report
.”
20.
Sinhyung Cho
,
H. S. H.
, and
Hyeon
,
R. C.
,
2010
, “
Wind Tunnel Uses Whooshing of Subway Trains to Generate Clean Electricity
.”
21.
Lapointe
,
C.
, and
Gopalan
,
H.
,
2016
, “
Numerical Investigation of Mini Wind Turbines Near Highways
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
024503
. 10.1115/1.4032428
22.
Laws
,
P.
,
Bethi
,
R. V.
,
Kumar
,
P.
, and
Mitra
,
S.
,
2019
, “
Improved Design of Savonius Rotor for Green Energy Production From Moving Singapore Metropolitan Rapid Transit Train Inside Tunnel
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
7
), pp.
2426
2441
. 10.1177/0954406218784620
23.
Tian
,
W.
,
Mao
,
Z.
,
An
,
X.
,
Zhang
,
B.
, and
Wen
,
H.
,
2017
, “
Numerical Study of Energy Recovery From the Wakes of Moving Vehicles on Highways by Using a Vertical Axis Wind Turbine
,”
Energy
,
141
, pp.
715
728
. 10.1016/j.energy.2017.07.172
24.
Hu
,
W.
,
Jiaqiang
,
E.
,
Deng
,
Y.
,
Li
,
L.
,
Han
,
D.
,
Zhao
,
X.
,
Zhang
,
Z.
, and
Peng
,
Q.
,
2018
, “
Effect Analysis on Power Coefficient Enhancement of a Convective Wind Energy Collecting Device in the Expressway
,”
Energy Convers. Manage.
,
171
, pp.
249
271
. 10.1016/j.enconman.2018.05.101
25.
Pan
,
H.
,
Li
,
H.
,
Zhang
,
T.
,
Laghari
,
A. A.
,
Zhang
,
Z.
,
Yuan
,
Y.
, and
Qian
,
B.
,
2019
, “
A Portable Renewable Wind Energy Harvesting System Integrated S-Rotor and H-Rotor for Self-Powered Applications in High-Speed Railway Tunnels
,”
Energy Convers. Manage.
,
196
, pp.
56
68
. 10.1016/j.enconman.2019.05.115
26.
Baker
,
C.
,
2010
, “
The Flow Around High Speed Trains
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
6–7
), pp.
277
298
. 10.1016/j.jweia.2009.11.002
27.
Li
,
Y.
,
Paik
,
K. J.
,
Xing
,
T.
, and
Carrica
,
P. M.
,
2012
, “
Dynamic Overset CFD Simulations of Wind Turbine Aerodynamics
,”
Renewable Energy
,
37
(
1
), pp.
285
298
. 10.1016/j.renene.2011.06.029
28.
Shaheen
,
M.
,
El-Sayed
,
M.
, and
Abdallah
,
S.
,
2015
, “
Numerical Study of Two-Bucket Savonius Wind Turbine Cluster
,”
J. Wind Eng. Ind. Aerodyn.
,
137
, pp.
78
89
. 10.1016/j.jweia.2014.12.002
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
30.
Rocha
,
P. C.
,
Rocha
,
H. B.
,
Carneiro
,
F. M.
,
da Silva
,
M. V.
, and
Bueno
,
A. V.
,
2014
, “
kω SST (shear Stress Transport) Turbulence Model Calibration: A Case Study on a Small Scale Horizontal Axis Wind Turbine
,”
Energy
,
65
, pp.
412
418
. 10.1016/j.energy.2013.11.050
31.
Akwa
,
J. V.
,
da Silva Júnior
,
G. A.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renewable Energy
,
38
(
1
), pp.
141
149
. 10.1016/j.renene.2011.07.013
32.
Chen
,
G.
,
Hajaiej
,
H.
,
Morris
,
P. J.
,
Paterson
,
E. G.
, and
Sergeev
,
A.
,
2014
,
OpenFOAM Computation of Interacting Wind Turbine Flows and Control (I): Free Rotating Case
, pp.
1
28
. hichem-hajaiej.com
33.
Geuzaine
,
C.
, and
Remacle
,
J.
,
2008
, “
Gmsh Reference Manual: The Documentation for Gmsh, A Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,” http://www.geuz.org/gmsh
34.
Gulati
,
M.
,
2011
, “
Sustainability Profile of Delhi Metro Rail Corporation (DMRC)
,”
SSRN 1769647
.
35.
Akwa
,
J. V.
,
2010
,
Análise aerodinâmica de turbinas eólicas Savonius empregando dinâmica dos fluidos computacional
.
36.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
. 10.1016/j.renene.2013.06.009
37.
Chen
,
L. F.
,
Zang
,
J.
,
Hillis
,
A. J.
,
Morgan
,
G. C. J.
, and
Plummer
,
A. R.
,
2014
, “
Numerical Investigation of Wave–Structure Interaction Using OpenFOAM
,”
Ocean Eng.
,
88
, pp.
91
109
. 10.1016/j.oceaneng.2014.06.003
38.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
, pp.
373
381
. 10.1016/j.renene.2012.09.046
39.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
. 10.1147/rd.112.0215
40.
Roenby
,
J.
,
Bredmose
,
H.
, and
Jasak
,
H.
,
2016
, “
A Computational Method for Sharp Interface Advection
,”
R. Soc. Open Sci.
,
3
(
11
), p.
160405
. 10.1098/rsos.160405
41.
Spalding
,
D.
,
1961
, “
A Single Formula for the ‘Law of the Wall’
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
. 10.1115/1.3641728
42.
Liu
,
F.
,
2017
,
A Thorough Description of How Wall Functions Are Implemented in OpenFOAM
,
Chalmers University of Techology
,
Sweden
, pp.
1
34
.
43.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
. 10.1016/j.jcp.2004.10.018
44.
Guide
,
O. U.
,
2011
, “
Programmers Guide
,”
JDT Core
, retrieved on April 2011,
27
(
3
).
45.
Chowdhury
,
A. M.
,
Akimoto
,
H.
, and
Hara
,
Y.
,
2016
, “
Comparative CFD Analysis of Vertical Axis Wind Turbine in Upright and Tilted Configuration
,”
Renewable Energy
,
85
, pp.
327
337
. 10.1016/j.renene.2015.06.037
46.
Jasak
,
H.
,
1996
,
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
.
47.
Mereu
,
R.
,
Federici
,
D.
,
Ferrari
,
G.
,
Schito
,
P.
, and
Inzoli
,
F.
,
2017
, “
Parametric Numerical Study of Savonius Wind Turbine Interaction in a Linear Array
,”
Renewable Energy
,
113
, pp.
1320
1332
. 10.1016/j.renene.2017.06.094
48.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2012
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer Science & Business Media
,
Berlin
, pp.
196
200
.
49.
Melbø
,
H. K.
,
2014
,
A Graphical User Interface for the Computational Fluid Dynamics Software OpenFOAM
,
NTNU
.
50.
Featherstone
,
R.
,
2014
,
Rigid Body Dynamics Algorithms
,
Springer
.
51.
Shen
,
Z.
,
Wan
,
D.
, and
Carrica
,
P. M.
,
2015
, “
Dynamic Overset Grids in OpenFOAM With Application to KCS Self-Propulsion and Maneuvering
,”
Ocean Eng.
,
108
, pp.
287
306
. 10.1016/j.oceaneng.2015.07.035
52.
Sheldahl
,
R. E.
,
Feltz
,
L. V.
, and
Blackwell
,
B. F.
,
1978
, “
Wind Tunnel Performance Data for Two-and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
. 10.2514/3.47966
53.
Nobile
,
R.
,
Vahdati
,
M.
,
Barlow
,
J. F.
, and
Mewburn-Crook
,
A.
,
2014
, “
Unsteady Flow Simulation of a Vertical Axis Augmented Wind Turbine: A Two-Dimensional Study
,”
J. Wind Eng. Ind. Aerodyn.
,
125
, pp.
168
179
. 10.1016/j.jweia.2013.12.005
54.
Lienhart
,
H.
, and
Becker
,
S.
,
2003
, “
Flow and Turbulence Structure in the Wake of a Simplified Car Model
,”
SAE Trans.
,
112
(
1
), pp.
785
796
.
55.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2019
, “
Improvement in Savonius Wind Turbine Efficiency by Modification of Blade Designs
,”
J. Eng. Res. Technol.
,
142
(
6
), p.
061303
.
56.
Khayrullina
,
A.
,
Blocken
,
B.
,
Janssen
,
W.
, and
Straathof
,
J.
,
2015
, “
CFD Simulation of Train Aerodynamics: Train-Induced Wind Conditions At An Underground Railroad Passenger Platform
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
100
110
. 10.1016/j.jweia.2015.01.019
You do not currently have access to this content.