Abstract

Thermal load prediction is a key part of energy system management and control in buildings, and its accuracy plays a critical role to improve building energy performance and efficiency. Regarding thermal load prediction, various types of prediction model have been considered and studied, such as physics-based, statistical, and machine learning models. Physical models can be accurate but require extended lead time for model development. Statistical models are relatively simple to develop and require less computation time, but they may not provide accurate results for complex energy systems with intricate nonlinear dynamic behaviors. This study proposes an artificial neural network (ANN) model, one of the prevalent machine learning methods to predict building thermal load, combining with the concept of nonlinear autoregressive with exogenous inputs (NARX). NARX-ANN prediction model is distinguished from typical ANN models because the NARX concept can address nonlinear system behaviors effectively based on its recurrent architectures and time indexing features. To examine the suitability and validity of NARX-ANN model for building thermal load prediction, a case study is carried out using the field data of an academic campus building at Mississippi State University (MSU). Results show that the proposed NARX-ANN model can provide an accurate and robust prediction performance and effectively address nonlinear system behaviors in the prediction.

References

References
1.
U.S. Energy Information Administration
,
2018
, “
Februray 2018 Monthly Energy Review
.”
2.
Chua
,
K. J.
,
Chou
,
S. K.
,
Yang
,
W. M.
, and
Yan
,
J.
,
2013
, “
Achieving Better Energy-Efficient Air Conditioning—A Review of Technologies and Strategies
,”
Appl. Energy
,
104
, pp.
87
104
. 10.1016/j.apenergy.2012.10.037
3.
Cox
,
S. J.
,
Kim
,
D.
,
Cho
,
H.
, and
Mago
,
P.
,
2019
, “
Real Time Optimal Control of District Cooling System With Thermal Energy Storage Using Neural Networks
,”
Appl. Energy
,
238
, pp.
466
480
. 10.1016/j.apenergy.2019.01.093
4.
Palchak
,
D.
,
Suryanarayanan
,
S.
, and
Zimmerle
,
D.
,
2013
, “
An Artificial Neural Network in Short-Term Electrical Load Forecasting of a University Campus: A Case Study
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
32001
. 10.1115/1.4023741
5.
Yeon
,
S.
,
Yu
,
B.
,
Seo
,
B.
,
Yoon
,
Y.
, and
Lee
,
K. H.
,
2019
, “
ANN Based Automatic Slat Angle Control of Venetian Blind for Minimized Total Load in an Office Building
,”
Sol. Energy
,
180
, pp.
133
145
. 10.1016/j.solener.2019.01.027
6.
Moon
,
J. W.
, and
Kim
,
J. J.
,
2010
, “
ANN-Based Thermal Control Models for Residential Buildings
,”
Build. Environ.
,
45
(
7
), pp.
1612
1625
. 10.1016/j.buildenv.2010.01.009
7.
Sarwar
,
R.
,
Cho
,
H.
,
Cox
,
S. J.
,
Mago
,
P. J.
, and
Luck
,
R.
,
2017
, “
Field Validation Study of a Time and Temperature Indexed Autoregressive With Exogenous (ARX) Model for Building Thermal Load Prediction
,”
Energy
,
119
, pp.
483
496
. 10.1016/j.energy.2016.12.083
8.
Seo
,
B. M.
, and
Lee
,
K. H.
,
2016
, “
Detailed Analysis on Part Load Ratio Characteristics and Cooling Energy Saving of Chiller Staging in an Office Building
,”
Energy Build.
,
119
, pp.
309
322
. 10.1016/j.enbuild.2016.03.067
9.
Wei
,
Y.
,
Zhang
,
X.
,
Shi
,
Y.
,
Xia
,
L.
,
Pan
,
S.
,
Wu
,
J.
,
Han
,
M.
, and
Zhao
,
X.
,
2018
, “
A Review of Data-Driven Approaches for Prediction and Classification of Building Energy Consumption
,”
Renewable Sustainable Energy Rev.
,
82
(
1
), pp.
1027
1047
. 10.1016/j.rser.2017.09.108
10.
Ahmad
,
T.
,
Chen
,
H.
,
Guo
,
Y.
, and
Wang
,
J.
,
2018
, “
A Comprehensive Overview on the Data Driven and Large Scale Based Approaches for Forecasting of Building Energy Demand: A Review
,”
Energy Build
,
165
, pp.
301
320
. 10.1016/j.enbuild.2018.01.017
11.
Datta
,
D.
,
Tassou
,
S. A.
, and
Marriott
,
D.
,
1997
, “
Application of Neural Networks for the Prediction of the Energy Consumption in a Supermarket
,”
Proceedings of CLIMA 2000 Conference
,
Brussels, Belgium
,
Aug. 30–Sept. 2
, pp.
98
107
.
12.
Erfani
,
A.
,
Rajabi-Ghahnaviyeh
,
A.
, and
Boroushaki
,
M.
,
2018
, “
Design and Construction of a Non-Linear Model Predictive Controller for Building’s Cooling System
,”
Build. Environ.
,
133
, pp.
237
245
. 10.1016/j.buildenv.2018.02.022
13.
Fu
,
Y.
,
Li
,
Z.
,
Zhang
,
H.
, and
Xu
,
P.
,
2015
, “
Using Support Vector Machine to Predict Next Day Electricity Load of Public Buildings With Sub-Metering Devices
,”
Procedia Eng.
,
121
, pp.
1016
1022
. 10.1016/j.proeng.2015.09.097
14.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Cho
,
H.
,
2012
, “
Building Hourly Thermal Load Prediction Using an Indexed ARX Model
,”
Energy Build.
,
54
, pp.
225
233
. 10.1016/j.enbuild.2012.08.007
15.
Zin
,
A. A. M.
,
Saini
,
M.
,
Mustafa
,
M. W.
,
Sultan
,
A. R.
, and
Rahimuddin
,
2015
, “
New Algorithm for Detection and Fault Classification on Parallel Transmission Line Using DWT and BPNN Based on Clarke’s Transformation
,”
Neurocomputing
,
168
, pp.
983
993
. 10.1016/j.neucom.2015.05.026
16.
Aydın
,
M. M.
,
Yıldırım
,
M. S.
,
Karpuz
,
O.
, and
Ghasemlou
,
K.
,
2014
, “
Modeling of Driver Lane Choice Behavior With Artificial Neural Networks (ANN) and Linear Regression (LR) Analysis on Deformed Roads
,”
Comput. Sci. Eng.
,
4
(
1
), pp.
47
57
. 10.5121/cseij.2014.4105
17.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
The 3rd International Conference for Learning Representations
,
San Diego, CA
,
May 7–9
, pp.
1
15
.
18.
Hargan
,
M. R.
,
2002
,
ASHRAE Guidline 14-2002 Measurement of Energy and Demand Savings
,
American Society of Heating, Ventilation, and Air-Conditioning Engineers Inc
,
Atlanta, GA
.
You do not currently have access to this content.