Abstract

Effects of controllable vortex slotted bluff body parameters (position of a bluff body, slit size, and controllable flow ratio) on the combustion characteristics of hydrogen/air in a micro-combustor with a bluff body were investigated numerically. The results illustrated that the combustion efficiency of hydrogen decreases with increasing distance (L1) between the front edge of the bluff body and the combustor inlet. The combustion characteristics of the micro-combustor are optimum when L1 is 0 mm. The blow-off limit of the combustor reaches a maximum (564 cm3/s) when the slit width (d) is 20% of the bluff body width. The blow-off limit first increases and then decreases when the equivalence ratio (φ) increases and reaches a maximum (732 cm3/s) when φ is 1.0, and the controllable flow ratio is 0.2. The combustion efficiency of hydrogen is gradually increased with the increase in the controllable flow ratio. When φ is less than 1.0, the optimal controllable flow ratio gradually decreases with the increase in the premixed gas flow rate, and the optimal controllable flow ratio basically remains at 0.6 when the premixed gas flow rate is less than 360 cm3/s.

References

1.
Waitz
,
I. A.
,
Gauba
,
G.
, and
Tzeng
,
Y.-S.
,
1998
, “
Combustors for Micro-Gas Turbine Engines
,”
ASME J. Fluids Eng.
,
12
(
1
), p.
109
117
. 10.1115/1.2819633
2.
Ju
,
Y.
, and
Maruta
,
K.
,
2011
, “
Microscale Combustion: Technology Development and Fundamental Research
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
669
715
. 10.1016/j.pecs.2011.03.001
3.
Maruta
,
K.
,
2011
, “
Micro and Mesoscale Combustion
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
125
150
. 10.1016/j.proci.2010.09.005
4.
Kim
,
N. I.
,
Kato
,
S.
,
Kataoka
,
T.
,
Yokomori
,
T.
,
Maruyama
,
S.
,
Fujimori
,
T.
, and
Maruta
,
K.
,
2005
, “
Flame Stabilization and Emission of Small Swiss-Roll Combustors as Heaters
,”
Combust. Flame
,
141
(
3
), pp.
229
240
. 10.1016/j.combustflame.2005.01.006
5.
Kuo
,
C. H.
, and
Ronney
,
P. D.
,
2007
, “
Numerical Modeling of Non-Adiabatic Heat-Recirculating Combustors
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3277
3284
. 10.1016/j.proci.2006.08.082
6.
Zhong
,
B. J.
, and
Wang
,
J. H.
,
2010
, “
Experimental Study on Premixed CH4/Air Mixture Combustion in Micro Swiss-Roll Combustors
,”
Combust. Flame
,
157
(
12
), pp.
2222
2229
. 10.1016/j.combustflame.2010.07.014
7.
Li
,
J.
,
Chou
,
S. K.
,
Li
,
Z. W.
, and
Yang
,
W. M.
,
2010
, “
Experimental Investigation of Porous Media Combustion in a Planar Micro-Combustor
,”
Fuel
,
89
(
3
), pp.
708
715
. 10.1016/j.fuel.2009.06.026
8.
Shi
,
J. R.
,
Xie
,
M. Z.
,
Li
,
G.
,
Liu
,
H.
,
Liu
,
J. T.
, and
Li
,
H. T.
,
2009
, “
Approximate Solutions of Lean Premixed Combustion in Porous Media With Reciprocating Flow
,”
Int. J. Heat Mass Transf.
,
52
(
3–4
), pp.
702
708
. 10.1016/j.ijheatmasstransfer.2008.08.002
9.
Shi
,
J. R.
,
Xie
,
M. Z.
,
Xue
,
Z. J.
,
Xu
,
Y. N.
, and
Liu
,
H. S.
,
2012
, “
Experimental and Numerical Studies on Inclined Flame Evolution in Packing Bed
,”
Int. J. Heat Mass Transf.
,
55
(
23–24
), pp.
7063
7071
. 10.1016/j.ijheatmasstransfer.2012.07.020
10.
Jiang
,
L. Q.
,
Zhao
,
D. Q.
,
Wang
,
X. H.
, and
Yang
,
W. B.
,
2009
, “
Development of a Self-Thermal Insulation Miniature Combustor
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1308
1313
. 10.1016/j.enconman.2009.01.015
11.
Taywade
,
U. W.
,
Deshpande
,
A. A.
, and
Kumar
,
S.
,
2013
, “
Thermal Performance of a Micro-Combustor With Heat Recirculation
,”
Fuel Process. Technol.
,
109
, pp.
179
188
. 10.1016/j.fuproc.2012.11.002
12.
Yi
,
Z.
,
Zhou
,
Z.
,
Tao
,
Q.
, and
Jiang
,
Z.
,
2019
, “
Experimental and Numerical Investigations in a Gas-Fired Boiler With Combustion Stabilizing Device
,”
ASME J. Energy Res. Technol.
,
141
(
11
), p.
112201
. 10.1115/1.4043637
13.
Li
,
X.
,
Cheng
,
Y.
,
Ji
,
S.
, and
Lan
,
X.
,
2017
, “
Influence of Key Structural Parameters of Combustion Chamber on the Performance of Diesel Engine
,”
ASME J. Energy Res. Technol.
,
139
(
4
), p.
042203
. 10.1115/1.4036049
14.
Chen
,
L.
, and
Battaglia
,
F.
,
2016
, “
The Effects of Inlet Turbulence Intensity and Computational Domain on a Nonpremixed Bluff-Body Flame
,”
ASME J. Energy Res. Technol.
,
139
(
2
), p.
022205
. 10.1115/1.4035149
15.
Chen
,
L.
, and
Battaglia
,
F.
,
2015
, “
The Effects of Fuel Mixtures in Nonpremixed Combustion for a Bluff-Body Flame
,”
ASME J. Energy Res. Technol.
,
138
(
2
), p.
022204
. 10.1115/1.4031835
16.
Huang
,
R. F.
, and
Lin
,
C. L.
,
2000
, “
Velocity Fields of Nonpremixed Bluff-Body Stabilized Flames
,”
ASME J. Energy Res. Technol.
,
122
(
2
), pp.
88
93
. 10.1115/1.483166
17.
Wan
,
J.
,
Fan
,
A.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
, “
Experimental and Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air Flame in a Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19190
19197
. 10.1016/j.ijhydene.2012.09.154
18.
Fan
,
A. W.
,
Wan
,
J. L.
,
Liu
,
Y.
,
Pi
,
B. M.
,
Yao
,
H.
,
Maruta
,
K.
, and
Liu
,
W.
,
2013
, “
The Effect of the Blockage Ratio on the Blow-Off Limit of a Hydrogen/Air Flame in a Planar Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11438
11445
. 10.1016/j.ijhydene.2013.06.100
19.
Zhao
,
Q. C.
, and
Qian
,
R. Z.
,
2000
, “
The Technology and Application of Slotted Bluff Body Combustion
,”
Shandong Electric Power Tech.
(
5
), pp.
1
5
.
20.
Nair
,
S.
, and
Lie
,
T. C.
,
2012
, “
Near Blow-Off Dynamics of a Bluff-Body Stabilized Flame
,”
J. Propul. Power
,
23
(
2
), pp.
421
427
. 10.2514/1.24650
21.
Yang
,
W. M.
,
Chou
,
S. K.
, and
Shu
,
C.
,
2002
, “
Combustion in Micro-Cylindrical Combustors With and Without a Backward Facing Step
,”
Appl. Therm. Eng.
,
22
(
16
), pp.
1777
1787
. 10.1016/S1359-4311(02)00113-8
22.
Li
,
L.
,
Yuan
,
Z.
,
Xiang
,
Y.
, and
Fan
,
A.
,
2018
, “
Numerical Investigation on Mixing Performance and Diffusion Combustion Characteristics of H2/Air in Planar Micro-Combustor
,”
Int. J. Hydrogen Energy
,
43
(
27
), pp.
12491
12498
. 10.1016/j.ijhydene.2018.04.194
23.
Fan
,
A.
,
Wan
,
J.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2013
, “
Interactions Between Heat Transfer, Flow Field and Flame Stabilization in a Micro-Combustor With a Bluff Body
,”
Int. J. Heat Mass Transf.
,
66
(
11
), pp.
72
79
. 10.1016/j.ijheatmasstransfer.2013.07.024
24.
Fan
,
A.
,
Wan
,
J.
,
Liu
,
Y.
,
Pi
,
B.
,
Yao
,
H.
, and
Liu
,
W.
,
2014
, “
Effect of Bluff Body Shape on the Blow-Off Limit of Hydrogen/Air Flame in a Planar Micro-Combustor
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
13
19
. 10.1016/j.applthermaleng.2013.09.010
25.
Shen
,
W. Q.
,
Cheng
,
Z.
, and
Li
,
C. F.
,
2012
, “
Combustion Characteristics of Methane/Air Mixtures in Small Bluff-Body Combustors
,”
Renew. Energy Sources
,
30
(
10
), pp.
89
92
.
26.
Bagheri
,
G.
,
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2014
, “
Effects of Bluff Body Shape on the Flame Stability in Premixed Micro-Combustion of Hydrogen-Air Mixture
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
266
272
. 10.1016/j.applthermaleng.2014.03.040
27.
Lan
,
Y.
,
Yang
,
Z.
,
Wang
,
P.
,
Yan
,
Y.
,
Zhang
,
L.
, and
Ran
,
J.
,
2019
, “
A Review of Microscopic Seepage Mechanism for Shale Gas Extracted by Supercritical CO2 Flooding
,”
Fuel
,
238
, pp.
412
424
. 10.1016/j.fuel.2018.10.130
28.
Li
,
H.
,
Yan
,
Y.
,
Feng
,
S.
,
Zhu
,
Y.
,
Chen
,
Y.
,
Fan
,
H.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2019
, “
Transition Metal Tuned Semiconductor Photocatalyst CuCo/β-SiC Catalyze Hydrolysis of Ammonia Borane to Hydrogen Evolution
,”
Int. J. Hydrogen Energy
,
44
(
16
), pp.
8307
8314
. 10.1016/j.ijhydene.2019.02.034
29.
Yan
,
Y.
,
Yan
,
H.
,
Zhang
,
L.
,
Li
,
L.
,
Zhu
,
J.
, and
Zhang
,
Z.
,
2018
, “
Numerical Investigation on Combustion Characteristics of Methane/Air in a Micro-Combustor With a Regular Triangular Pyramid Bluff Body
,”
Int. J. Hydrogen Energy
,
43
(
15
), pp.
7581
7570
. 10.1016/j.ijhydene.2018.02.168
30.
Yan
,
Y.
,
He
,
Z.
,
Xu
,
Q.
,
Zhang
,
L.
,
Li
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2019
, “
Numerical Study on Premixed Hydrogen/Air Combustion Characteristics in Micro-Combustor With Slits on Both Sides of the Bluff Body
,”
Int. J. Hydrogen Energy
,
44
(
3
), pp.
1998
2012
. 10.1016/j.ijhydene.2018.11.128
31.
Yan
,
Y.
,
Feng
,
S.
,
Huang
,
Z.
,
Zhang
,
L.
,
Pan
,
W.
,
Li
,
L.
, and
Yang
,
Z.
,
2018
, “
Thermal Management and Catalytic Combustion Stability Characteristics of Premixed Methane/Air in Heat Recirculation Meso-Combustors
,”
Int. J. Energy Res.
,
42
(
3
), pp.
999
1012
. 10.1002/er.3887
32.
Yan
,
Y.
,
Wu
,
G.
,
Huang
,
W.
,
Zhang
,
L.
,
Li
,
L.
, and
Yang
,
Z.
,
2019
, “
Numerical Comparison Study of Methane Catalytic Combustion Characteristic Between Newly Proposed Opposed Counter-Flow Micro-Combustor and the Conventional Ones
,”
Energy
,
170
, pp.
403
410
. 10.1016/j.energy.2018.12.114
33.
Yan
,
Y.
,
Liu
,
Y.
,
Li
,
H.
,
Huang
,
W.
,
Chen
,
Y.
,
Li
,
L.
, and
Yang
,
Z.
,
2018
, “
Effect of Cavity Coupling Factors of Opposed Counter-Flow Microcombustor on the Methane-Fueled Catalytic Combustion Characteristics
,”
ASME J. Energy Res. Technol.
,
141
(
2
), p.
022202
. 10.1115/1.4041405
34.
Lee
,
B. J.
,
Yoo
,
C. S.
, and
Im
,
H. G.
,
2015
, “
Dynamics of Bluff-Body-Stabilized Premixed Hydrogen/Air Flames in a Narrow Channel
,”
Combust. Flame
,
162
(
6
), pp.
2602
2609
. 10.1016/j.combustflame.2015.03.009
35.
Deng
,
Y. B.
,
Deng
,
H. T.
, and
Wang
,
Y. L.
,
2013
, “
Flow and Combustion Characteristics of Hydrogen Fuel Advanced Swirl Chamber of Combustion
,”
J. Aerosp. Power
,
28
(
1
), pp.
120
128
.
36.
Sun
,
J. H.
,
Zeng
,
Z. X.
, and
Xu
,
Y. H.
,
2014
, “
Study on Improvement of Combustion Performance of Micro Combustor With a Slotted Bluff Body
,”
J. Aerosp. Power
,
29
(
7
), pp.
1639
1646
.
37.
Wang
,
Z. K.
,
Zeng
,
Z. X.
, and
Xu
,
Y. H.
,
2014
, “
Study on Combustion Characteristics of Advanced Vortex Combustion Chamber With Double Cavity Open
,”
J. Projectile Guidance
,
34
(
5
), pp.
117
122
.
38.
Wang
,
Z. K.
,
Zeng
,
Z. X.
, and
Xu
,
Y. H.
,
2015
, “
Numerical Study on Combustion Characteristics of Advanced Swirl Combustion Chamber With a Slitting Bluff Body
,”
J. Projectile Guidance
,
35
(
2
), pp.
81
87
.
39.
Ma
,
X. X.
,
Jin
,
S. P.
, and
Qian
,
R. Z.
,
1994
, “
Mechanism and Application of a New Type of Coal Powder Slit Bluff Body Burner for Flame Stabilization
,”
Power Syst. Eng.
,
10
(
6
), pp.
31
33
.
40.
Sun
,
Q. Y.
, and
Guo
,
X. Y.
,
2016
, “
Study on Improvement of Combustion Performance of Micro-Combustor With a Slotted Bluff Body
,”
Energy Eng.
(
5
), pp.
8
13
.
41.
Zeng
,
Z. X.
,
Guo
,
S. S.
, and
Chen
,
C. J.
,
2016
, “
Numerical Analysis of Three-Dimensional Turbulent Combustion Characteristics of Controllable Vortex Structures
,”
Therm. Power Eng.
,
31
(
6
), pp.
42
47
.
42.
Zeng
,
Z. X.
,
Chen
,
C. J.
, and
Xu
,
Y. H.
,
2014
, “
The Effect of Structural Parameter Optimization on the Performance of Controllable Vortex Diffuser Was Analyzed
,”
Propul. Technol.
,
35
(
6
), pp.
742
748
.
43.
Zhang
,
Y.
,
Zhou
,
J. H.
,
Yang
,
W.
,
Liu
,
M. S.
, and
Cen
,
K. F.
,
2006
, “
Study on the Selection for Micro-Combustion Simulation model
,”
Proc. Chin. Soc. Electr. Eng.
,
26
(
z1
), pp.
81
87
.
44.
Ivan
,
A. A.
, and
Ahsan
,
R. C.
,
2003
, “
Numerical Investigation on the Mixing Behavior of Micro-Combustors
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
10.1115/DETC2003/CIE-48245.
45.
Wan
,
J. L.
,
Zhang
,
J. Y.
,
Liu
,
H.
,
Fan
,
A. W.
, and
Yao
,
H.
,
2013
, “
Experimental and Numerical Studies of Hydrogen/Air Combustion in a Micro-Combustor With a Bluff Body
,”
J. Eng. Thermophys.
,
34
(
11
), pp.
2198
2201
.
You do not currently have access to this content.