Abstract

The combustion kinetics of corn stalk (CS), paper sludge (PS), and their mixture were studied by thermogravimetric analysis (TGA) using one model-fitting method (Coats–Redfern (CR)) and four model-free methods, namely, Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), Starink, and Friedman methods. TGA experiments were carried out at three different heating rates (10, 20, and 30 °C min−1) and with different weight percentages of PS in the mixture (0%, 20%, 50%, 80%, and 100%). The comprehensive combustion characteristic index decreases with an increase in the weight percentage of PS in the blends and increases with the increasing heating rate. Significant interactions occur in the co-firing of the blends containing 20% and 50% of PS. The co-firing kinetic parameters determined by the CR method show relatively high reliability due to the high correlation coefficient obtained from the linear fitting. The values of average activation energy determined by the model-fitting method are generally lower than those calculated from model-free methods. The co-firing of the blends containing 20% of PS shows the highest comprehensive combustion characteristic index and the lowest average activation energy based on the model-free methods.

References

1.
Jiang
,
D.
,
Zhuang
,
D.
,
Fu
,
J.
,
Huang
,
Y.
, and
Wen
,
K.
,
2012
, “
Bioenergy Potential From Crop Residues in China: Availability and Distribution
,”
Renew. Sustain. Energy Rev.
,
16
(
3
), pp.
1377
1382
. 10.1016/j.rser.2011.12.012
2.
Ridout
,
A. J.
,
Carrier
,
M.
, and
Görgens
,
J.
,
2015
, “
Fast Pyrolysis of Low and High Ash Paper Waste Sludge: Influence of Reactor Temperature and Pellet Size
,”
J. Anal. Appl. Pyrol.
,
111
, pp.
64
75
. 10.1016/j.jaap.2014.12.010
3.
Bajpai
,
J.
,
2015
,
Management of Pulp and Paper Mill Waste
,
Springer International Publishing
,
New York
, Chap. 6.
4.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Kinetics of Synergistic Effects in Co-Pyrolysis of Biomass With Plastic Wastes
,”
Appl. Energy
,
220
, pp.
408
418
. 10.1016/j.apenergy.2018.03.117
5.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Modeling of Biomass Pyrolysis Kinetics Using Sequential Multi-Step Reaction Model
,”
Fuel
,
237
, pp.
1057
1067
. 10.1016/j.fuel.2018.09.097
6.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Characteristics of Char From Co-Pyrolysis of Biomass and Plastic Waste
,”
ASME Power Conference
,
Lake Buena Vista, FL
,
June 24–28
, p.
V001T01A008
.
7.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
In-Situ Characterization of Surface Components During Cellulose Pyrolysis
,”
2018 International Energy Conversion Engineering Conference
,
Cincinnati, OH
,
July 9–11
. Paper No. AIAA-2018-4412.
8.
Burra
,
K. G.
,
Singh
,
P.
, and
Gupta
,
A. K.
,
2019
, “
Conversion of Absorbent Polymer Wastes to Syngas Using Pyrolysis and CO2 Assisted Gasification
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
. Paper No. AIAA-2019-1774.
9.
Burra
,
K. G.
,
Hussein
,
M. S.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2016
, “
Syngas Evolutionary Behavior During Chicken Manure Pyrolysis and Air Gasification
,”
Appl. Energy
,
181
, pp.
408
415
. 10.1016/j.apenergy.2016.08.095
10.
Hussein
,
M. S.
,
Burra
,
K. G.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2017
, “
Temperature and Gasifying Media Effects on Chicken Manure Pyrolysis and Gasification
,”
Fuel
,
202
, pp.
36
45
. 10.1016/j.fuel.2017.04.017
11.
Hupa
,
M.
,
Karlström
,
O.
, and
Vainio
,
E.
,
2017
, “
Biomass Combustion Technology Development—It Is All About Chemical Details
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
113
134
. 10.1016/j.proci.2016.06.152
12.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Song
,
Z.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072203
. 10.1115/1.4039445
13.
Álvarez
,
A.
,
Pizarro
,
C.
,
García
,
R.
,
Bueno
,
J. L.
, and
Lavín
,
A. G.
,
2016
, “
Determination of Kinetic Parameters for Biomass Combustion
,”
Bioresour. Technol.
,
216
, pp.
36
43
. 10.1016/j.biortech.2016.05.039
14.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
. 10.1115/1.4038406
15.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
. 10.1115/1.4036958
16.
Åmand
,
L.-E.
,
Leckner
,
B.
,
Eskilsson
,
D.
, and
Tullin
,
C.
,
2006
, “
Deposits on Heat Transfer Tubes During Co-Combustion of Biofuels and Sewage Sludge
,”
Fuel
,
85
(
10–11
), pp.
1313
1322
. 10.1016/j.fuel.2006.01.001
17.
Xing
,
X.
,
Li
,
Y.
,
Xing
,
Y.
,
Xu
,
B.
,
Fan
,
F.
,
Zhang
,
X.
, and
Xing
,
J.
,
2017
, “
Co-Combustion Characteristics and Kinetic Analyses of Biomass Briquette and Municipal Solid Waste in N2/O2 and CO2/O2 Atmospheres
,”
Bioresources
,
12
(
1
), pp.
1317
1334
. 10.15376/biores.12.1.1317-1334
18.
Cai
,
Z.
,
Ma
,
X.
,
Fang
,
S.
,
Yu
,
Z.
, and
Lin
,
Y.
,
2016
, “
Thermogravimetric Analysis of the Co-Combustion of Eucalyptus Residues and Paper Mill Sludge
,”
Appl. Therm. Eng.
,
106
, pp.
938
943
. 10.1016/j.applthermaleng.2016.06.088
19.
Hu
,
S.
,
Ma
,
X.
,
Lin
,
Y.
,
Yu
,
Z.
, and
Fang
,
S.
,
2015
, “
Thermogravimetric Analysis of the Co-Combustion of Paper Mill Sludge and Municipal Solid Waste
,”
Energy Convers. Manage.
,
99
, pp.
112
118
. 10.1016/j.enconman.2015.04.026
20.
Shah
,
M.
,
Poudel
,
J.
,
Kwak
,
H.
, and
Oh
,
S. C.
,
2015
, “
Kinetic Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols
,”
Process Saf. Environ. Prot.
,
98
, pp.
239
244
. 10.1016/j.psep.2015.08.002
21.
Wang
,
S.
,
Lin
,
H.
,
Ru
,
B.
,
Dai
,
G.
,
Wang
,
X.
,
Xiao
,
G.
, and
Luo
,
Z.
,
2016
, “
Kinetic Modeling of Biomass Components Pyrolysis Using a Sequential and Coupling Method
,”
Fuel
,
185
, pp.
763
771
. 10.1016/j.fuel.2016.08.037
22.
Toptas
,
A.
,
Yildirim
,
Y.
,
Duman
,
G.
, and
Yanik
,
J.
,
2015
, “
Combustion Behavior of Different Kinds of Torrefied Biomass and Their Blends With Lignite
,”
Bioresour. Technol.
,
177
, pp.
328
336
. 10.1016/j.biortech.2014.11.072
23.
White
,
J. E.
,
Catallo
,
W. J.
, and
Legendre
,
B. L.
,
2011
, “
Biomass Pyrolysis Kinetics: A Comparative Critical Review With Relevant Agricultural Residue Case Studies
,”
J. Anal. Appl. Pyrol.
,
91
(
1
), pp.
1
33
. 10.1016/j.jaap.2011.01.004
24.
Çepelioğullar
,
Ö.
,
Haykırı-Açma
,
H.
, and
Yaman
,
S.
,
2016
, “
Kinetic Modelling of RDF Pyrolysis: Model-Fitting and Model-Free Approaches
,”
Waste Manage.
,
48
, pp.
275
284
. 10.1016/j.wasman.2015.11.027
25.
Gil
,
M. V.
,
Casal
,
D.
,
Pevida
,
C.
,
Pis
,
J.
, and
Rubiera
,
F.
,
2010
, “
Thermal Behaviour and Kinetics of Coal/Biomass Blends During Co-Combustion
,”
Bioresour. Technol.
,
101
(
14
), pp.
5601
5608
. 10.1016/j.biortech.2010.02.008
26.
Coats
,
A. W.
, and
Redfern
,
J. P.
,
1964
, “
Kinetic Parameters From Thermogravimetric Data
,”
Nature
,
201
(
4914
), pp.
68
69
. 10.1038/201068a0
27.
Liao
,
Y.
, and
Ma
,
X.
,
2010
, “
Thermogravimetric Analysis of the Co-Combustion of Coal and Paper Mill Sludge
,”
Appl. Energy
,
87
(
11
), pp.
3526
3532
. 10.1016/j.apenergy.2010.05.008
28.
Jiang
,
X.
,
Zheng
,
C.
,
Qiu
,
J.
,
Li
,
J.
, and
Liu
,
D.
,
2001
, “
Combustion Characteristics of Super Fine Pulverized Coal Particles
,”
Energy Fuels
,
15
(
5
), pp.
1100
1102
. 10.1021/ef000283g
29.
Xie
,
Z.
, and
Ma
,
X.
,
2013
, “
The Thermal Behaviour of the Co-Combustion Between Paper Sludge and Rice Straw
,”
Bioresour. Technol.
,
146
, pp.
611
618
. 10.1016/j.biortech.2013.07.127
30.
Huang
,
L.
,
Liu
,
J.
,
He
,
Y.
,
Sun
,
S.
,
Chen
,
J.
,
Sun
,
J.
,
Chang
,
K.
, and
Kuo
,
J.
,
2016
, “
Thermodynamics and Kinetics Parameters of Co-Combustion Between Sewage Sludge and Water Hyacinth in CO2/O2 Atmosphere as Biomass to Solid Biofuel
,”
Bioresour. Technol.
,
218
, pp.
631
642
. 10.1016/j.biortech.2016.06.133
31.
Qin
,
H.
,
Yue
,
Y.
,
Zhang
,
L.
,
Liu
,
Y.
,
Chi
,
M.
,
Liu
,
H.
,
Wang
,
Q.
, and
Liu
,
B.
,
2016
, “
Study on Co-Combustion Kinetics of Oil Shale Sludge and Semicoke
,”
Energy Fuels
,
30
(
3
), pp.
2373
2384
. 10.1021/acs.energyfuels.5b02024
32.
Wang
,
G.
,
Zhang
,
J.
,
Shao
,
J.
,
Liu
,
Z.
,
Zhang
,
G.
,
Xu
,
T.
,
Guo
,
J.
,
Wang
,
H.
,
Xu
,
R.
, and
Lin
,
H.
,
2016
, “
Thermal Behavior and Kinetic Analysis of Co-Combustion of Waste Biomass/Low Rank Coal Blends
,”
Energy Convers. Manage.
,
124
, pp.
414
426
. 10.1016/j.enconman.2016.07.045
33.
Vamvuka
,
D.
,
Salpigidou
,
N.
,
Kastanaki
,
E.
, and
Sfakiotakis
,
S.
,
2009
, “
Possibility of Using Paper Sludge in Co-Firing Applications
,”
Fuel
,
88
(
4
), pp.
637
643
. 10.1016/j.fuel.2008.09.029
34.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Lee
,
D. H.
, and
Zheng
,
C.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12–13
), pp.
1781
1788
. 10.1016/j.fuel.2006.12.013
35.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Xu
,
H.
,
Liu
,
L.
,
Yan
,
X.
, and
Chen
,
D.
,
2018
, “
FT-IR and Micro-Raman Spectroscopic Characterization of Minerals in High-Calcium Coal Ashes
,”
J. Energy Inst.
,
91
(
3
), pp.
389
396
. 10.1016/j.joei.2017.02.003
36.
Yan
,
Y.
,
Feng
,
S.
,
Zhang
,
L.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2018
, “
Experimental Research on Catalytic Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032201
. 10.1115/1.4037373
You do not currently have access to this content.