Abstract

The incorporation of renewable energy into the future world energy matrix challenges its efficient use because renewable energy is not always available due to its dependence on natural factors such as wind and sunlight. This work develops a new resource management system to evaluate the renewable energy resources stored in salt caves using power-to-gas (P2G) and compressed air energy storage (CAES) technologies in the initial phase of a project (sub-commercial phase). To fulfill this objective, bibliographical research, document analysis, and consultations with specialists were used as the methodological basis. Two systems were identified to be used as a reference for the proposed methodology: Petroleum Resources Management System (PRMS) and CO2 Storage Resources Management System (SRMS). A classification framework is proposed for energy storage and an application of the framework is presented for a case study in Portugal. Similar to these reference systems, a sub-commercial project momentum was established, and three stages called total potential resource (R3), total probable resource (R2), and total proved resource (R1) were defined. The results support corporate and governmental decision-making on project continuity for both the market and governments, thus demonstrating their importance in new global energy reality. It is recommended to define the sub-commercial stage as well as the mapping of R2 in the Brazilian territory as was done recently in Europe.

References

References
1.
Matos
,
C. R.
,
Carneiro
,
J. F.
, and
Silva
,
P. P.
,
2019
, “
Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification
,”
J. Energy Store.
,
21
, pp.
241
258
. 10.1016/j.est.2018.11.023
2.
Roy
,
B. U.
, and
Rengarajan
,
N.
,
2017
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
. 10.1115/1.4033857
3.
Koytsoumpa
,
E. I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjörnsson
,
Ó
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
. 10.1115/1.4032544
4.
EASE—Europe Energy Association for Storage of Energy
,
2018
, “
Study on Storage Demand Report
,”
13
p.,
Brussels, Belgium
. http://www.ease-storage.eu/event/energy-storage-2019
5.
IEA—International Energy Agency
,
2014
, “
Energy Storage Technology Roadmap Report
,”
64
p.,
Paris, France
.
6.
UNFCCC—United Nations Framework Convention on Climate Change
,
2015
, “
Adoption of the Paris Agreement—Proposal by the President
,” Report,
31
p.,
Paris, France
.
7.
Barnhart
,
C. J.
, and
Benson
,
S. M.
,
2013
, “
On the Importance of Reducing the Energetic and Material Demands of Electrical Energy Storage
,”
Energy Environ. Sci.
,
6
(
4
), pp.
1083
1092
. 10.1039/c3ee24040a
8.
IFC—International Finance Corporation
,
2017
,
Energy Storage Trends and Opportunities in Emerging Markets
,
Inc.
,
Boulder, CO, USA
.
9.
Johnson
,
P. M.
,
2014
, “
Assessment of Compressed Air Energy Storage System (CAES)
,” Master thesis of Science: Engineering,
The University of Tennessee
,
Chattanooga, Tennessee
.
10.
Sreekanth
,
K. J.
,
Al Foraih
,
R.
,
Al-Mulla
,
A.
, and
Abdulrahman
,
B.
,
2019
, “
Feasibility Analysis of Energy Storage Technologies in Power Systems for Arid Region
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
011901
. 10.1115/1.4040931
11.
Tallini
,
A.
,
Vallati
,
A.
, and
Cedola
,
L.
,
2015
, “
Applications of Micro-CAES Systems: Energy and Economic Analysis
,”
Energy Procedia
,
82
, pp.
797
804
. 10.1016/j.egypro.2015.11.815
12.
Pellow
,
M. A.
,
Emmott
,
C. J.
,
Barnhart
,
C. J.
, and
Benson
,
S. M.
,
2015
, “
Hydrogen or Batteries for Grid Storage? A Net Energy Analysis
,”
Energy Environ. Sci.
,
8
(
7
), pp.
1938
1952
. 10.1039/C4EE04041D
13.
Carneiro
,
J. F.
,
Matos
,
C. R.
, and
Van Gessel
,
S.
,
2019
, “
Opportunities for Large-Scale Energy Storage in Geological Formations in Mainland Portugal
,”
Renewable Sustainable Energy Rev.
,
99
, pp.
201
211
. 10.1016/j.rser.2018.09.036
14.
Bauer
,
S.
,
Beyer
,
C.
,
Dethlefsen
,
F.
,
Dietrich
,
P.
,
Duttmann
,
R.
,
Ebert
,
M.
,
Feeser
,
V.
,
Görke
,
U.
,
Köber
,
R.
,
Kolditz
,
O.
,
Rabbel
,
W.
,
Schanz
,
T.
,
Schäfer
,
D.
,
Würdemann
,
H.
, and
Dahmke
,
A.
,
2013
, “
Impacts of the use of the Geological Subsurface for Energy Storage: An Investigation Concept
,”
Environ. Earth Sci.
,
70
(
8
), pp.
3935
3943
. 10.1007/s12665-013-2883-0
15.
Delmastro
,
C.
,
Lavagno
,
E.
, and
Schranz
,
L.
,
2016
, “
Energy and Underground
,”
Tunn. Undergr. Space Technol.
,
55
, pp.
96
102
. 10.1016/j.tust.2015.10.021
16.
Energy—European Network for Research in Geoenergy
,
2014
, “
The Role of the Underground for Massive Storage of Electric Energy
,”
Geo Energy
,
29
(
4
). http://www.energnet.eu/system/files/newsletter/newslettter-29.pdf
17.
Frailey
,
S. M.
,
Tucker
,
O.
, and
Koperna
,
G. J.
,
2017
, “
The Genesis of the CO2 Storage Resources Management System (SRMS)
,”
Energy Procedia
,
114
, pp.
4262
4269
. 10.1016/j.egypro.2017.03.1566
18.
SPE—Society of Petroleum Engineers
,
2018
, “
Petroleum Resources Management System (PRMS)
,” http://www.spe.org, Accessed December 18, 2018.
19.
SPE—Society of Petroleum Engineers
,
2018
, “
CO2 Storage Resources Management System (SRMS)
,” http://www.spe.org, Accessed December 15, 2018,
20.
UNECE -– United Nations Economic Commission for Europe
,
2009
, “
Initial Draft Specifications for the application of the United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009 to Anthropogenic Resources
.” https://www.unece.org/fileadmin/DAM/energy/se/pp/unfc_egrc/egrc8_apr_2017/EGRC.8.2017.INF.7e.pdf
21.
Evans
,
D. J.
,
2007
, “
An Appraisal of Underground Gas Storage Technologies and Incidents, for the Development of Risk Assessment Methodology
,” Volume
1
, Text. Volume 2, Figures and Tables.
22.
Kreith
,
F.
, and
West
,
R.
,
2004
, “
Fallacies of a Hydrogen Economy: A Critical Analysis of Hydrogen Production and Utilization
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
249
257
. 10.1115/1.1834851
23.
Lord
,
A. S.
,
Kobos
,
P. H.
, and
Borns
,
D. J.
,
2009
, “
Geologic Storage of Hydrogen
,” 2009 Annual Progress Report: DOE Hydrogen Program,
November
2009.
24.
IEA—International Energy Agency
,
2006
,
Hydrogen production and storage—R&D priorities and gaps
,” https://www.iea.org/publications/freepublications/publication/hydrogen.pdf, Accessed March 8, 2019.
25.
Crotogino
,
F.
,
Mohmeyer
,
K. U.
, and
Scharf
,
R.
,
2001
, “
Huntorf CAES: More Than 20 Years of Successful Operation
,”
Proceedings of SMRI Spring Meeting
.
26.
Ozarslan
,
A.
,
2012
, “
Large-Scale Hydrogen Energy Storage in Salt Caverns
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14265
14277
. 10.1016/j.ijhydene.2012.07.111
27.
Van Gessel
,
S.
,
2017
, “
ESTMAP- D3.05: Country Energy Storage Evaluation
,” Report,
190
p,
Amsterdam, Netherlands
.
28.
McMichael
,
C.
,
1997
, “
The SPE/WPC Reserve Definitions: The Impact on Past and Future Reserve Evaluations
,”
Proceedings of SPE Hydrocarbon Economics and Evaluation Symposium
,
Dallas, TX
,
Mar. 16–18
,
Society of Petroleum Engineers
.
29.
Al-bahar
,
M. A.
,
Kamal
,
D. S.
,
Almayyan
,
H. I.
, and
Bora
,
A.
,
2011
, “
January Reserves Management System-Rapid Tool for Optimizing and Tracking the Growth of Hydrocarbon Resources & Reserves
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Sept. 25–28
,
Society of Petroleum Engineers
.
30.
Lee
,
W. J.
,
Purewal
,
S.
, and
Harrell
,
D. R.
,
2012
, “
New Guidelines Document Assists with PRMS Applications
,”
Proceedings of SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
.
31.
Allen
,
R. D.
,
Doherty
,
T. J.
, and
Fossum
,
A. F.
,
1982
,
Geotechnical Issues and Guidelines for Storage of Compressed Air in Excavated Hard Rock Caverns (No. PNL-4180)
,
Pacific Northwest Laboratory
,
Richland, WA
.
32.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
. 10.1016/j.apenergy.2016.02.108
33.
Nunes
,
P. C.
,
2010
, “
Potencial de Armazenamento Subterrâneo em Cavidades Salinas de Gás Natural em Portugal
,”.
Instituto Superior Técnico, Tese de Mestrado, Eng. Geologica e de Minas
.
34.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
. 10.1115/1.4033399
35.
Gallo
,
A. B.
,
Simões-Moreira
,
J. R.
,
Costa
,
H. K. M.
,
Santos
,
M. M.
, and
dos Santos
,
E. M.
,
2016
, “
Energy Storage in the Energy Transition Context: A Technology Review
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
800
822
. 10.1016/j.rser.2016.07.028
36.
Coll
,
C.
, and
Elliott
,
S.
,
2013
, “
Probabilistic and Deterministic Methods: Applicability in Unconventional Reservoirs
,”
Proceedings of EAGE Annual Conference and Exhibition Incorporating SPE Europec
,
Society of Petroleum Engineers
.
37.
Alves
,
J. F. S. D. S.
,
2015
, “
Análise de Viabilidade de Armazenamento de Energia Sob Forma de ar Comprimido em Cavernas Subterrâneas
,” Master's thesis,
Universidade de Évora
,
Évora, Portugal
.
38.
Succar
,
S.
, and
Williams
,
R. H.
,
2008
, “
Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power
,” Princeton Environmental Institute Report, 8, pp.
81
.
You do not currently have access to this content.