Abstract

Digital power plant is the theory and method to improve the operating quality of power plant by quantifying, analyzing, controlling, and deciding the physical and working objects of power plants in the whole life cycle. And the foundation of digital power plant is system modeling and performance analysis. However, there are some problems in the process of modeling establishment and performance analysis. For instance, each component has different dimensions and different types of mathematical description, and the data or information used for modeling are defined differently and belong to different enterprises, who do not want to share their information. Meta-modeling is a potential method to solve these problems. It defines the specification to describe different kinds of elements and the relationship between different elements. In this paper, the collaborative modeling and simulation platform for digital power plant has been established based on the meta-modeling method and the performance of the target power plant has been analyzed from different aspects via field data. The meta-modeling method consists of three parts: syntax definition, model development, and algorithm definition. In the comparative study between the meta-model and the traditional model, maximum average errors of the two methods are 8.72% and 4.74%, which reveals the high accuracy of the meta-modeling-based model. The result shows that the modeling and simulation platform for power plants can be used to reduce costs, decrease equipment failure rate, and improve plant output, so as to guarantee the safety and increase economics.

References

1.
Srinivasan
,
J.
, and
Chotai
,
S.
,
2017
, “
Digital Power Plant System and Method
,” U.S. Patent Application No. 15/251,626.
2.
Hildebrandt
,
M.
, and
Fernandes
,
A.
,
2016
, “
Micro Task Evaluation of Analog vs. Digital Power Plant Control Room Interfaces
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
,
Los Angeles, CA
,
September
, pp.
1349
1353
.
3.
Lei
,
N. I. E.
,
Zhuang
,
Z.
, and
Yi-nan
,
W.
,
2017
, “
Smart Power Generation Project System Design and Case Discussions
,”
Electr. Power Inf. Commun. Technol.
,
15
(
8
), pp.
99
103
.
4.
Alobaid
,
F.
,
Mertens
,
N.
,
Starkloff
,
R.
,
Lanz
,
T.
,
Heinze
,
C.
, and
Epple
,
B.
,
2017
, “
Progress in Dynamic Simulation of Thermal Power Plants
,”
Prog. Energy Combust. Sci.
,
59
(
2
), pp.
79
162
. 10.1016/j.pecs.2016.11.001
5.
Kasaei
,
M. J.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062003
. 10.1115/1.4037371
6.
Tiller
,
M.
,
Dearborn
,
U.
,
Tummescheit
,
U. H.
,
Hartford
,
U.
,
Casella
,
F.
, and
Leva
,
A.
,
2003
, “
Modelica Open Library for Power Plant Simulation: Design and Experimental Validation
,”
Proceeding of the 2003 Modelica conference
,
Linkoping, Sweden
,
November
.
7.
Roy
,
R. P.
,
Ratisher
,
M.
, and
Gokhale
,
V. K.
,
2001
, “
A Computational Model of a Power Plant Steam Condenser
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
81
91
. 10.1115/1.1348336
8.
Dumitrescu
,
A.
,
Lee
,
T. W.
, and
Roy
,
R. P.
,
2011
, “
Computational Model of a Hybrid Pressurized Solid Oxide Fuel Cell Generator/Gas Turbine Power Plant
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012602
. 10.1115/1.4003707
9.
Pourbeik
,
P.
,
Baba
,
Z.
,
Hung
,
W.
,
Boyer
,
R.
,
Inoue
,
T.
,
Bozic
,
Z.
,
Karoui
,
K.
,
Chan
,
K.
,
Khaled
,
M.
,
Chatellier
,
S.
,
Kolluri
,
V.
,
Darie
,
G.
,
Langenbacher
,
F.
,
Donalek
,
P.
,
Li
,
A.
,
Feltes
,
J.
,
O'Keefe
,
R.
,
Gaglioti
,
E.
,
Pahalawaththa
,
N.
,
Hajagos
,
L.
,
Schneider, Jr.
,
A. W.
,
Hanneton
,
V.
,
Stewart
,
B.
,
Hepner
,
S.
,
Tong
,
D.
,
Hsu
,
J.
, and
Undrill
,
J. M.
,
2003
,
Modeling of Gas Turbines and Steam Turbines in Combined Cycle Power Plants
,
CIGRE Technical Brochure
, pp.
1
119
. https://cigreindia.org/CIGRE
10.
Alobaid
,
F.
,
Postler
,
R.
,
Ströhle
,
J.
,
Epple
,
B.
, and
Kim
,
H. G.
,
2008
, “
Modeling and Investigation Start-Up Procedures of a Combined Cycle Power Plant
,”
Appl. Energy
,
85
(
12
), pp.
1173
1189
. 10.1016/j.apenergy.2008.03.003
11.
Bassily
,
A. M.
,
2007
, “
Modeling, Numerical Optimization, and Irreversibility Reduction of a Triple-Pressure Reheat Combined Cycle
,”
Energy
,
32
(
5
), pp.
778
794
. 10.1016/j.energy.2006.04.017
12.
Gonzalez-Perez
,
C.
, and
Henderson-Sellers
,
B.
,
2006
, “
A Powertype-Based Metamodelling Framework
,”
Software Syst. Model.
,
5
(
1
), pp.
72
90
. 10.1007/s10270-005-0099-9
13.
Kaviri
,
A. G.
,
Jaafar
,
M. N. M.
, and
Lazim
,
T. M.
,
2012
, “
Modeling and Multi-Objective Exergy Based Optimization of a Combined Cycle Power Plant Using a Genetic Algorithm
,”
Energy Convers. Manage.
,
58
(
6
), pp.
94
103
. 10.1016/j.enconman.2012.01.002
14.
Ramaprabhu
,
V.
, and
Roy
,
R. P.
,
2004
, “
A Computational Model of a Combined Cycle Power Generation Unit
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
231
240
. 10.1115/1.1789523
15.
Khaliq
,
A.
,
Habib
,
M. A.
, and
Choudhary
,
K.
,
2019
, “
A Thermo-Environmental Evaluation of a Modified Combustion Gas Turbine Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042004
. 10.1115/1.4041898
16.
Mokheimer
,
E. M. A.
, and
Dabwan
,
Y. N.
,
2019
, “
Performance Analysis of Integrated Solar Tower With a Conventional Heat and Power Co-Generation Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021201
. 10.1115/1.4041409
17.
Hester
,
J.
,
Gregory
,
J.
, and
Kirchain
,
R.
,
2017
, “
Sequential Early-Design Guidance for Residential Single-Family Buildings Using a Probabilistic Metamodel of Energy Consumption
,”
Energy Build.
,
134
(
1
), pp.
202
211
. 10.1016/j.enbuild.2016.10.047
18.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
J. Mech. Des.
,
129
(
4
), pp.
370
380
. https://doi.org/10.1115/1.2429697
19.
Mellor
,
S. J.
,
Scott
,
K.
,
Uhl
,
A.
, and
Weise
,
D.
,
2004
,
MDA Distilled: Principles of Model-Driven Architecture
, 1st ed.,
Pearson Education. Inc
,
Boston
, pp.
1
145
.
20.
Ahmed
,
M. Y. M.
, and
Qin
,
N.
,
2010
, “
Metamodels for Aerothermodynamic Design Optimization of Hypersonic Spiked Blunt Bodies
,”
Aerosp. Sci. Technol.
,
14
(
5
), pp.
364
376
. 10.1016/j.ast.2010.03.003
21.
Zachariadis
,
S.
,
Mascolo
,
C.
, and
Emmerich
,
W.
,
2006
, “
The SATIN Component System—A Metamodel for Engineering Adaptable Mobile Systems
,”
IEEE Trans. Software Eng.
,
32
(
11
), pp.
910
927
. 10.1109/TSE.2006.115
22.
Peng
,
L.
,
Liu
,
L.
,
Long
,
T.
, and
Yang
,
W.
,
2014
, “
An Efficient Truss Structure Optimization Framework Based on CAD/CAE Integration and Sequential Radial Basis Function Metamodel
,”
Struct. Multidiscip. Optim.
,
50
(
2
), pp.
329
346
. 10.1007/s00158-014-1050-x
23.
Ernadote
,
D.
,
2015
, “
An Ontology Mindset for System Engineering
,”
IEEE International Symposium on Systems Engineering (ISSE)
,
Rome, Italy
,
Sept. 28–30
, pp.
454
460
.
24.
Girardi
,
D.
,
Dirnberger
,
J.
, and
Giretzlehner
,
M.
,
2011
, “
Meta-Model Based Knowledge Discovery
,”
International Conference on Data and Knowledge Engineering
,
Milan, Italy
,
Sept. 6
,
IEEE
, pp.
8
12
.
25.
Song
,
L. M.
,
Guo
,
Z. D.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
. 10.1115/1.4032653
26.
Tao
,
S. Y.
,
Shintani
,
K.
,
Bostanabad
,
R.
,
Chan
,
Y. Q.
,
Yang
,
G.
,
Meingast
,
H.
, and
Chen
,
W.
,
2017
, “
Enhanced Gaussian Process Metamodeling and Collaborative Optimization for Vehicle Suspension Design Optimization
,”
ASME
,
Cleveland, OH
,
Aug. 6–9
, p.
V02BT03A039
.
27.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Oper. Res.
,
58
(
2
), pp.
371
382
. 10.1287/opre.1090.0754
28.
Masuda
,
H.
,
Utz
,
W.
, and
Hara
,
Y.
,
2014
, “
Development of an Evaluation Approach for Customer Service Interaction Models
,”
International Conference on Knowledge Science, Engineering and Management
,
Springer, Cham
.
29.
Favre
,
L.
, and
Duarte
,
D.
,
2016
, “
Formal MOF Metamodeling and Tool Support
,”
Proceedings of the 4th International Conference on IEEE Model-Driven Engineering and Software Development (MODELSWARD)
,
Rome, Italy
,
Feb. 19–21
, pp.
99
110
.
30.
Gülen
,
S. C.
,
2016
, “
Étude on Gas Turbine Combined Cycle Power Plant: Next 20 Years
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051701
. 10.1115/1.4031477
You do not currently have access to this content.