Abstract

An experimental investigation is presented using three-dimensional (3-D) stereo-particle image velocimetry (stereo-PIV) of a swirl flow that models a gas turbine blade internal cooling configuration. The study is intended to provide an evaluation of the developments of the swirl cooling flow methodology utilizing the 3-D stereo-PIV. The objective is to determine the critical swirl number that has the potential to deliver the maximum axial velocity results. The swirl cooling flow methodology comprises cooling air channeling through the blade’s internal passages lowering the temperature; therefore, the experimental circular chamber is made of acrylic allowing detailed measurements and includes seven discrete tangential jets designed to create the swirl flow. An oil particle seeder (LAVision) is used to provide the particles for velocity measurements while the clear acrylic chamber allows visualization of the flow phenomena. The post-processed data are completed using davis, velocity calculations are conducted in matlab, and techplot is used for data visualization. The focus of this investigation is on the continuous swirl flow that must be sustained via continuous injection of tangential flow at three different Reynolds number, 7000, 14,000, and 21,000, where the swirl flow is generated with seven inlets. Important variations in the swirl number are present near the air inlets and decreases with downstream distance as predicted, since the second half of the chamber has no more inlets. The axial velocity reaches the maximum downstream in the second half of the chamber. The circumferential velocity decreases the downstream distance and reaches the highest toward the center of the chamber.

References

1.
Moon
,
H.-K.
,
O’Connell
,
T.
, and
Glezer
,
B.
,
1998
, “
Heat Transfer Enhancement in a Circular Channel Using Lenghtwise Continuous Tangential Injection
,”
Heat Transfer
,
6
, pp.
559
564
. 10.1615/ihtc11.1310
2.
Glezer
,
B.
,
Moon
,
H.-K.
, and
O’Connell
,
T.
,
1996
, “
A Novel Technique for the Internal Blade Cooling
,”
Am. Soc. Mech. Eng.
,
4
, pp.
1
10
.
3.
Ligrani
,
P.
,
Hedlund
,
C. R.
,
Thambu
,
R.
,
Babinchak
,
T.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1997
, “
Flow Phenomena in Swirl Chambers
,”
Am. Soc. Mech. Eng.
, pp.
254
264
. 10.1115/97-gt-530
4.
Najafi
,
A. F.
,
Mousavian
,
S. M.
, and
Amini
,
K.
,
2011
, “
Numerical Investigations on Swirl Intensity Decayrate for Turbulent Swirling
,”
Int. J. Mech. Sci.
,
53
(
10
), pp.
801
811
. 10.1016/j.ijmecsci.2011.06.011
5.
Rocha
,
A. D.
,
Bannwart
,
A. C.
, and
Ganzarolli
,
M. M.
,
2015
, “
Numerical and Experimental Study of an Axially Induced Swirling Pipe Flow
,”
Int. J. Heat Fluid Flow
,
53
(
June
), pp.
81
90
. 10.1016/j.ijheatfluidflow.2015.02.003
6.
Fitouri
,
A.
,
Khan
,
M. K.
, and
Bruun
,
H. H.
,
1995
, “
A Multiposition Hot-Wire Technique for the Study of Swirling Flows in Vortex Chambers
,”
Exp. Therm. Fluid. Sci.
,
10
(
Jan.
), pp.
142
151
. 10.1016/0894-1777(94)00076-K
7.
Algifri
,
A.
,
Bhardwaj
,
R. K.
, and
Rao
,
Y. V. N.
,
1988
, “
Heat Transfer in Turbulent Decaying Swirl Flow in a Circular Pipe
,”
Heat Mass Transfer
,
31
(
8
), pp.
1563
1568
. 10.1016/0017-9310(88)90268-2
8.
Hedlund
,
C. R.
, and
Ligrani
,
P.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
374
385
. 10.1115/1.555458
9.
Thambu
,
R.
,
Babinchak
,
T.
,
Ligrani
,
P.
,
Hedlund
,
C. R.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Flow in a Simple Swirl Chamber With and Without Controlled Inlet Forcing
,”
Exp. Fluids
,
26
(
4
), pp.
347
357
. 10.1007/s003480050298
10.
Chang
,
F.
, and
Dhir
,
V.
,
1995
, “
Mechanisms of Heat Transfer Enhancement and Slow Decay of Swirl in Tubes Using Tangential Injection
,”
Heat Fluid Flow
,
16
(
2
), pp.
78
87
. 10.1016/0142-727X(94)00016-6
11.
Date
,
A. W.
,
1974
, “
Prediction of Fully-Developed Flow in a Tube Containing a Twisted-Tape
,”
Heat Mass Transfer
,
17
(
8
), pp.
854
859
. 10.1016/0017-9310(74)90152-5
12.
Kreith
,
F.
, and
Margolis
,
D.
,
1959
, “
Heat Transfer and Friction in Turbulent Vortex Flow
,”
Appl. Sci.
,
8
(
A
), pp.
1
17
.
13.
Li
,
H.
, and
Tomita
,
Y.
,
1994
, “
Characteristics of Swirling Flow in a Circular Pipe
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
370
382
. 10.1115/1.2910283
14.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitailah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
. 10.1115/1.4042824
15.
Cai
,
C.
,
Yang
,
Y.
,
Liu
,
J.
,
Gao
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Downhole Transient Flow Field and Heat Transfer Characteristics During Drilling With Liquid Nitrogen Jet
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122902
. 10.1115/1.4040531
16.
Elgammal
,
T.
, and
Amano
,
R.
,
2018
, “
Effectiveness of Central Swirlers in the Thermal Uniformity of Jet-In-Crossflow Mixing
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101202
. 10.1115/1.4040075
17.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2016
, “
An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032202
. 10.1115/1.4035023
18.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J.
, and
Pinotti
,
M.
,
2017
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
. 10.1115/1.4038464
19.
Carlanescu
,
R.
,
Prisecaru
,
T.
,
Prisecaru
,
M.
, and
Soriga
,
I.
,
2018
, “
Swirl Injector for Premixed Combustion of Hydrogen-Methane Mixtures
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072002
. 10.1115/1.4039267
20.
Wieneke
,
B.
,
2014
, “
Generic A-Posteriori Uncertainty Quantification for PIV Vector Fields by Correlation Statistics
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Germany
, pp.
1
9
.
You do not currently have access to this content.