Abstract

Air-assisted steam injection is a new technique for heavy oil reservoir exploitation. This paper focused on the thermophysical properties of the air/steam system, such as density, viscosity, specific heat capacity, enthalpy, and thermal conductivity coefficient, and these have been calculated using the Redlich–Kwong equation of state (RK EOS). The viscosity of the air/steam system under high temperature and high pressure was calculated with the corresponding state principle and rectified with the Dean–Stiel residual viscosity method. The results showed that compared with the saturated steam of the same mass, the viscosity, specific heat capacity, thermal conductivity, and enthalpy of the air/steam mixture decreased, while the specific volume increased, which indicated that the addition of air to steam weakened the thermal effect of the steam and makes use of the heat insulation and thermal expansion of air. This study can provide guidance for parameter design of air-assisted steam injection for heavy oil recovery.

References

1.
Dong
,
X. H.
,
Liu
,
H. Q.
,
Chen
,
Z. X.
,
Wu
,
K. L.
,
Lu
,
N.
, and
Zhang
,
Q. C.
,
2019
, “
Enhanced Oil Recovery Techniques for Heavy Oil and Oilsands Reservoirs After Steam Injection
,”
Appl. Energy
,
239
, pp.
1190
1211
. 10.1016/j.apenergy.2019.01.244
2.
Mokheimer
,
E. M. A.
,
Hamdy
,
M.
,
Zubairu
,
A.
,
Raghib
,
S. M.
,
Habib
,
M. A.
, and
Mohamed
,
M.
,
2018
, “
A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
030801
. 10.1115/1.4041096
3.
Wu
,
Z.
,
Liu
,
H.
, and
Wang
,
X.
,
2017
, “
Adaptability Research of Thermal–Chemical Assisted Steam Injection in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052901
. 10.1115/1.4038405
4.
Wu
,
H.
,
Du
,
Q.
,
Hou
,
J.
,
Li
,
J.
,
Gong
,
R.
,
Liu
,
Y.
, and
Li
,
Z.
,
2016
, “
Characterization and Prediction of Gas Breakthrough With Cyclic Steam and Gas Stimulation Technique in an Offshore Heavy Oil Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032801
. 10.1115/1.4034857
5.
Venkat
,
V. A.
, and
Ryosuke
,
O.
,
2018
, “
Steam-Oil Ratio in Steam-Solvent Coinjection Simulation for Homogeneous and Heterogeneous Bitumen Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112903
. 10.1115/1.4040529
6.
Du
,
Z.
,
Zeng
,
F.
, and
Chan
,
C.
,
2015
, “
An Experimental Study of the Post-CHOPS Cyclic Solvent Injection Process
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042901
. 10.1115/1.4029972
7.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022901
. 10.1115/1.4033982
8.
Ursenbach
,
M. G.
,
Moore
,
R. G.
, and
Mehta
,
S. A.
,
2010
, “
Air Injection in Heavy Oil Reservoirs—A Process Whose Time Has Come (Again)
,”
J. Can. Pet. Technol.
,
49
(
1
), pp.
48
54
. 10.2118/132487-PA
9.
Wang
,
Y.
,
Ren
,
S.
,
Zhang
,
L.
,
Peng
,
X.
, and
Pei
,
S.
,
2018
, “
Numerical Study of Air Assisted Cyclic Steam Stimulation Process for Heavy Oil Reservoirs: Recovery Performance and Energy Efficiency Analysis
,”
Fuel
,
211
, pp.
471
483
. 10.1016/j.fuel.2017.09.079
10.
Wang
,
Y.
,
Zhang
,
L.
,
Deng
,
J.
,
Wang
,
Y.
, and
Ren
,
S.
,
2017
, “
An Innovative Air Assisted Cyclic Steam Stimulation Technique for Enhanced Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
151
, pp.
254
263
. 10.1016/j.petrol.2017.01.020
11.
Rahnema
,
H.
,
Barrufet
,
M.
, and
Mamora
,
D. D.
,
2017
, “
Combustion Assisted Gravity Drainage—Experimental and Simulation Results of a Promising In-Situ Combustion Technology to Recover Extra-Heavy Oil
,”
J. Pet. Sci. Eng.
,
154
, pp.
513
520
. 10.1016/j.petrol.2017.01.044
12.
Wu
,
Z. B.
,
Wang
,
L.
,
Xie
,
C. J.
, and
Yang
,
W. B.
,
2019
, “
Experimental Investigation on Improved Heavy Oil Recovery by Air Assisted Steam Injection With 2D Visualized Models
,”
Fuel
,
252
, pp.
109
115
. 10.1016/j.fuel.2019.04.097
13.
Hallam
,
R. J.
, and
Donnelly
,
J. K.
,
1993
, “
Pressure-Up Blowdown Combustion: A Channeled Reservoir Recovery Process
,”
SPE Adv. Technol. Ser.
,
1
(
1
), pp.
153
158
. 10.2118/18071-PA
14.
Galas
,
C. M. F.
,
Ejogu
,
G. C.
, and
Donnelly
,
J. K.
,
1991
, “
Fluid and Heat Movements During In-Situ Combustion in a Channelled Reservoir
,”
J. Can. Pet. Technol.
,
30
(
3
), pp.
41
48
.
15.
Dong
,
X.
,
Liu
,
H.
,
Chen
,
Z.
,
Wu
,
K.
,
Lu
,
N.
, and
Zhang
,
Q.
,
2019
, “
Enhanced Oil Recovery Techniques for Heavy Oil and Oilsands Reservoirs After Steam Injection
,”
Appl. Energy
,
239
, pp.
1190
1211
. 10.1016/j.apenergy.2019.01.244
16.
Turta
,
A. T.
,
Chattopadhyay
,
S. K.
,
Bhattacharya
,
R. N.
,
Condrachi
,
A.
, and
Hanson
,
S.
,
2007
, “
Current Status of Commercial In Situ Combustion Projects Worldwide
,”
J. Can. Pet. Technol.
,
46
(
11
), pp.
8
14
. 10.2118/07-11-GE
17.
Yang
,
J.
,
Li
,
X.
,
Yan
,
Y.
,
Zhang
,
B.
, and
Zhang
,
X.
,
2017
, “
Research on Enhancing Heavy Oil Recovery by Steam-Air Flooding
,”
J. Southwest Pet. Univ.
,
39
(
2
), pp.
111
117
.
18.
Tsilingiris
,
P. T.
,
2008
, “
Thermophysical and Transport Properties of Humid Air at Temperature Range Between 0 and 100 °C
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1098
1110
. 10.1016/j.enconman.2007.09.015
19.
Tsilingiris
,
P. T.
,
2018
, “
Review and Critical Comparative Evaluation of Moist Air Thermophysical Properties at the Temperature Range Between 0 and 100 °C for Engineering Calculations
,”
Renew. Sustain. Energy Rev.
,
83
, pp.
50
63
. 10.1016/j.rser.2017.10.072
20.
Melling
,
A.
,
Noppenberger
,
S.
,
Still
,
M.
, and
Venzke
,
H.
,
1997
, “
Interpolation Correlation for Fluid Properties of Humid Air in the Temperature Range 100 °C to 200 °C
,”
J. Phys. Chem. Ref. Data
,
26
, pp.
1111
1123
. 10.1063/1.555998
21.
Ji
,
X.
,
Lu
,
X.
, and
Yan
,
J.
,
2003
, “
Saturated Humidity, Entropy, and Enthalpy for the Nitrogen-Water System at Elevated Temperatures and Pressures
,”
Int. J. Thermophys.
,
24
(
6
), pp.
1681
1696
. 10.1023/B:IJOT.0000004099.06582.98
22.
Reid
,
R. C.
,
Prausnitzd
,
J. M.
, and
Poling
,
P. E.
,
1988
,
The Properties of Gases and Liquids
,
Mc GrawHill International Editions
,
Chemical Engineering Series
.
23.
Giacomo
,
P.
,
1982
, “
Equation for Determination of the Density of Moist Air
,”
Metrologia
,
18
, pp.
33
40
. 10.1088/0026-1394/18/1/006
24.
Ejiogu
,
G. C.
, and
Fiori
,
M.
,
1987
, “
High-Pressure Saturated-Steam Correlations
,”
J. Pet. Technol.
,
39
(
12
), pp.
1585
1590
. 10.2118/15405-PA
25.
Tortlke
,
W. S.
, and
Farouq Ali
,
S. M.
,
1989
, “
Saturated-Steam-Property Functional Correlations for Fully Implicit Thermal Reservoir Simulation
,”
SPE Reservoir Eng.
,
11
, pp.
471
474
. 10.2118/17094-PA
26.
Chien
,
S.-F.
,
1992
, “
Empirical Correlations of Saturated Steam Properties
,”
SPE Reservoir Eng.
,
5
, pp.
295
303
. 10.2118/20319-PA
27.
Fengrui
,
S.
,
Yuedong
,
Y.
,
Xiangfang
,
L.
,
Guozhen
,
L.
,
Yanan
,
M.
,
Song
,
H.
, and
Zhili
,
C.
,
2018
, “
Flow Simulation of the Mixture System of Supercritical CO2 & Superheated Steam in Toe-Point Injection Horizontal Wellbores
,”
J. Pet. Sci. Eng.
,
163
, pp.
199
210
. 10.1016/j.petrol.2017.12.085
28.
Ji
,
X.
,
Lu
,
X.
, and
Yan
,
J.
,
2004
, “
Phase Equilibria for the Oxygen–Water System up to Elevated Temperatures and Pressures
,”
Fluid Phase Equilib.
,
222–223
, pp.
39
47
. 10.1016/j.fluid.2004.06.029
29.
Liu
,
H. Q.
,
2013
,
Thermal Recovery Principal and Design
,
Petroleum Industry Press
,
Beijing
.
30.
Dong
,
X. H.
,
Liu
,
H. Q.
,
Zhang
,
Z. X.
, and
Wang
,
C. J.
,
2014
, “
The Flow and Heat Transfer Characteristics of Multi-Thermal Fluid in Horizontal Wellbore
,”
J. Pet. Sci. Eng.
,
122
, pp.
56
68
. 10.1016/j.petrol.2014.05.015
31.
Dong
,
X. H.
,
Liu
,
H. Q.
,
Pang
,
Z. X.
,
Wang
,
C. J.
, and
Lu
,
C.
,
2014
, “
Flow and Heat Transfer Characteristics of Multi-Thermal Fluid in a Dual-String Horizontal Well
,”
Numer. Heat Transfer Part A
,
66
(
2
), pp.
185
204
. 10.1080/10407782.2013.873255
You do not currently have access to this content.