Abstract
Air-assisted steam injection is a new technique for heavy oil reservoir exploitation. This paper focused on the thermophysical properties of the air/steam system, such as density, viscosity, specific heat capacity, enthalpy, and thermal conductivity coefficient, and these have been calculated using the Redlich–Kwong equation of state (RK EOS). The viscosity of the air/steam system under high temperature and high pressure was calculated with the corresponding state principle and rectified with the Dean–Stiel residual viscosity method. The results showed that compared with the saturated steam of the same mass, the viscosity, specific heat capacity, thermal conductivity, and enthalpy of the air/steam mixture decreased, while the specific volume increased, which indicated that the addition of air to steam weakened the thermal effect of the steam and makes use of the heat insulation and thermal expansion of air. This study can provide guidance for parameter design of air-assisted steam injection for heavy oil recovery.