Abstract

Even though the renewable technologies are getting a gradually increasing share of the energy industry, the momentum of its growth is far away from outweighing the dominance of fossil fuel. Due to the concern for ozone depletion, global warming, and many more environmental hazards caused by fossil fuels, it is essential to substitute the conventional energy sources with renewables. Since this replacement cannot be done overnight, the conventional energy technologies should be integrated with renewables to minimize the pace of adverse effects on fossil fuel–based industries in the meantime. This way, the industries can be more efficient by utilizing waste heat, which accounts for 50% of the total energy generated now. This review paper outlines the role of solar energy in the generation of power and cooling systems that are capable of utilizing low-temperature heat sources below 400 °C. The review is primarily concentrated on line-focused concentrated solar power (CSP)-assisted solar technologies to be integrated with organic Rankine cycle (ORC) and absorption cooling systems. Photovoltaic and similar multigeneration systems are also discussed in brief.

References

References
1.
Constantino
,
G.
,
Freitas
,
M.
,
Fidelis
,
N.
,
Pereira
,
M.
,
Constantino
,
G.
,
Freitas
,
M.
,
Fidelis
,
N.
, and
Pereira
,
M. G.
,
2018
, “
Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts
,”
Energies
,
11
(
10
), p.
2806
. 10.3390/en11102806
2.
Girgin
,
I.
, and
Ezgi
,
C.
,
2017
, “
Design and Thermodynamic and Thermoeconomic Analysis of an Organic Rankine Cycle for Naval Surface Ship Applications
,”
Energy Convers. Manag.
,
148
, pp.
623
634
. 10.1016/j.enconman.2017.06.033
3.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2016
, “
Thermo-Economic Comparisons Between Solar Steam Rankine and Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
105
, pp.
862
875
. 10.1016/j.applthermaleng.2016.04.055
4.
Tartière
,
T.
, and
Astolfi
,
M.
,
2017
, “
A World Overview of the Organic Rankine Cycle Market
,”
Energy Proc.
,
129
, pp.
2
9
.
First appeared in IV International Seminar on ORC Power Systems, ORC2017
,
Sept. 13–15
,
Milano, Italy
. 10.1016/j.egypro.2017.09.159
5.
Tartière
,
T.
,
2017
, “
ORC Market—Updated Analysis
,” ORC World Map, https://orc-world-map.org/analysis, Accessed March 29, 2019.
6.
Markvart
,
T.
, and
Castañer
,
L.
,
2003
,
Practical Handbook of Photovoltaics : Fundamentals and Applications
,
Elsevier Advanced Technology
,
New York
.
7.
Sivaram
,
V.
,
2018
,
Taming the Sun : Innovations to Harness Solar Energy and Power the Planet
,
MIT Press
,
Cambridge, MA
, p.
392
.
8.
Landelle
,
A.
,
Tauveron
,
N.
,
Haberschill
,
P.
,
Revellin
,
R.
, and
Colasson
,
S.
,
2017
, “
Organic Rankine Cycle Design and Performance Comparison Based on Experimental Database
,”
Appl. Energy
,
204
, pp.
1172
1187
. 10.1016/j.apenergy.2017.04.012
9.
Chen
,
A.
,
Yossef
,
M.
, and
Zhang
,
C.
,
2018
, “
Strain Effect on the Performance of Amorphous Silicon and Perovskite Solar Cells
,”
Sol. Energy
,
163
, pp.
243
250
. 10.1016/j.solener.2018.01.057
10.
Ondraczek
,
J.
,
2014
, “
Are We There Yet? Improving Solar PV Economics and Power Planning in Developing Countries: The Case of Kenya
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
604
615
. 10.1016/j.rser.2013.10.010
11.
Velilla
,
E.
,
Ramirez
,
D.
,
Uribe
,
J.-I.
,
Montoya
,
J. F.
, and
Jaramillo
,
F.
,
2019
, “
Outdoor Performance of Perovskite Solar Technology: Silicon Comparison and Competitive Advantages at Different Irradiances
,”
Sol. Energy Mater. Sol. Cells
,
191
, pp.
15
20
. 10.1016/j.solmat.2018.10.018
12.
Wang
,
K.
,
Jin
,
Z.
,
Liang
,
L.
,
Bian
,
H.
,
Bai
,
D.
,
Wang
,
H.
,
Zhang
,
J.
,
Wang
,
Q.
, and
Shengzhong
,
L.
,
2018
, “
All-Inorganic Cesium Lead Iodide Perovskite Solar Cells With Stabilized Efficiency Beyond 15%
,”
Nat. Commun.
,
9
(
1
), p.
4544
. 10.1038/s41467-018-06915-6
13.
Blanco
,
M.
, and
Santigosa
,
L. R.
,
2017
,
Advances in Concentrating Solar Thermal Research and Technology
,
Woodhead Publishing
,
Cambridge, UK
, pp.
3
25
.
14.
Hasanuzzaman
,
M.
,
Malek
,
A. B. M. A.
,
Islam
,
M. M.
,
Pandey
,
A. K.
, and
Rahim
,
N. A.
,
2016
, “
Global Advancement of Cooling Technologies for PV Systems: A Review
,”
Sol. Energy
,
137
, pp.
25
45
. 10.1016/j.solener.2016.07.010
15.
Barlev
,
D.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Innovation in Concentrated Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
95
(
10
), pp.
2703
2725
. 10.1016/j.solmat.2011.05.020
16.
Janda
,
K.
,
2018
, “
Slovak Electricity Market and the Price Merit Order Effect of Photovoltaics
,”
Energy Policy
,
122
, pp.
551
562
. 10.1016/j.enpol.2018.07.021
17.
Aguilar-Jiménez
,
J. A.
,
Velázquez
,
N.
,
Acuña
,
A.
,
Cota
,
R.
,
González
,
E.
,
González
,
L.
,
López
,
R.
, and
Islas
,
S.
,
2018
, “
Techno-Economic Analysis of a Hybrid PV-CSP System With Thermal Energy Storage Applied to Isolated Microgrids
,”
Sol. Energy
,
174
, pp.
55
65
. 10.1016/j.solener.2018.08.078
18.
Qu
,
W.
,
Hong
,
H.
,
Li
,
Q.
, and
Xuan
,
Y.
,
2018
, “
Co-Producing Electricity and Solar Syngas by Transmitting Photovoltaics and Solar Thermochemical Process
,”
Appl. Energy
,
217
, pp.
303
313
. 10.1016/j.apenergy.2018.02.159
19.
Icaza
,
D.
, and
Sami
,
S.
,
2018
, “
Modeling, Simulation and Stability Analysis Using MATLAB of a Hybrid System Solar Panel and Wind Turbine in the Locality of Puntahacienda-Quingeo in Ecuador
,”
Int. J. Manag. Sustain.
,
7
(
1
), pp.
1
24
. 10.18488/journal.11.2018.71.1.24
20.
Renno
,
C.
,
2018
, “
Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes
,”
Energies
,
11
(
11
), p.
2960
. 10.3390/en11112960
21.
Xiao
,
M.
,
Tang
,
L.
,
Zhang
,
X.
,
Lun
,
I. Y. F.
, and
Yuan
,
Y.
,
2018
, “
A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems
,”
Energies
,
11
(
12
). 10.3390/en11123416
22.
Ben Youssef
,
W.
,
Maatallah
,
T.
,
Menezo
,
C.
, and
Ben Nasrallah
,
S.
,
2018
, “
Modeling and Optimization of a Solar System Based on Concentrating Photovoltaic/Thermal Collector
,”
Sol. Energy
,
170
, pp.
301
313
. 10.1016/j.solener.2018.05.057
23.
Riverola
,
A.
,
Moreno
,
A.
, and
Chemisana
,
D.
,
2018
, “
Performance of a Dielectric PVT Concentrator for Building-Façade Integration
,”
Opt. Express
,
26
(
18
), p.
A892
. 10.1364/OE.26.00A892
24.
Rahbar
,
K.
,
Riasi
,
A.
,
Khatam Bolouri Sangjoeei
,
H.
, and
Razmjoo
,
N.
,
2019
, “
Heat Recovery of Nano-Fluid Based Concentrating Photovoltaic Thermal (CPV/T) Collector With Organic Rankine Cycle
,”
Energy Convers. Manag.
,
179
, pp.
373
396
. 10.1016/j.enconman.2018.10.066
25.
Uche
,
J.
,
Acevedo
,
L.
,
Círez
,
F.
,
Usón
,
S.
,
Martínez-Gracia
,
A.
, and
Bayod-Rújula
,
Á. A.
,
2019
, “
Analysis of a Domestic Trigeneration Scheme With Hybrid Renewable Energy Sources and Desalting Techniques
,”
J. Clean. Prod.
,
212
, pp.
1409
1422
. 10.1016/j.jclepro.2018.12.006
26.
Pina
,
E. A.
,
Lozano
,
M. A.
, and
Serra
,
L. M.
,
2018
, “
Opportunities for the Integration of Solar Thermal Heat, Photovoltaics and Biomass in a Brazilian Hospital
,”
EuroSun 2018—12th International Conference on Solar Energy for Buildings and Industry
,
Rapperswil, Switzerland
,
Sept. 10–13
, pp.
1
12
. www.eurosun2018.org
27.
Sadeghi
,
S.
, and
Askari
,
I. B.
,
2019
, “
Prefeasibility Techno-Economic Assessment of a Hybrid Power Plant With Photovoltaic, Fuel Cell and Compressed Air Energy Storage (CAES)
,”
Energy
,
168
, pp.
409
424
. 10.1016/j.energy.2018.11.108
28.
Chen
,
X.
,
Zhang
,
T.
,
Xue
,
X.
,
Chen
,
L.
,
Li
,
Q.
, and
Mei
,
S.
,
2018
, “
A Solar–Thermal-Assisted Adiabatic Compressed Air Energy Storage System and Its Efficiency Analysis
,”
Appl. Sci.
,
8
(
8
), p.
1390
. 10.3390/app8081390
29.
Islam
,
M. T.
,
Huda
,
N.
,
Abdullah
,
A. B.
, and
Saidur
,
R.
,
2018
, “
A Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
987
1018
. 10.1016/j.rser.2018.04.097
30.
Kasaeian
,
A.
,
Tabasi
,
S.
,
Ghaderian
,
J.
, and
Yousefi
,
H.
,
2018
, “
A Review on Parabolic Trough/Fresnel Based Photovoltaic Thermal Systems
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
193
204
. 10.1016/j.rser.2018.03.114
31.
Manikandan
,
G. K.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2019
, “
Enhancing the Optical and Thermal Efficiency of a Parabolic Trough Collector—A Review
,”
Appl. Energy
,
235
, pp.
1524
1540
. 10.1016/j.apenergy.2018.11.048
32.
Pantaleo
,
A. M.
,
Camporeale
,
S. M.
,
Sorrentino
,
A.
,
Miliozzi
,
A.
,
Shah
,
N.
, and
Markides
,
C. N.
,
2018
, “
Hybrid Solar-Biomass Combined Brayton/Organic Rankine-Cycle Plants Integrated With Thermal Storage: Techno-Economic Feasibility in Selected Mediterranean Areas
,”
Renew. Energy
,
10
, pp.
1
19
. 10.1016/J.RENENE.2018.08.022
33.
Mata-Torres
,
C.
,
Zurita
,
A.
,
Cardemil
,
J. M.
, and
Escobar
,
R. A.
,
2019
, “
Cost Allocation Analysis of a CSP+ MED Plant Considering Time-Varying Conditions
,”
SolarPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Casablanca, Morocco
,
Oct. 2–5
,
C.
Richter
, ed., Vol.
2126
, No.
1
, p.
230002
.
34.
Mata-Torres
,
C.
,
Zurita
,
A.
,
Cardemil
,
J. M.
, and
Escobar
,
R. A.
,
2018
, “
Exergy Cost Analysis of a CSP-Rankine Cycle Coupled With a MED Plant Considering Time-Varying Conditions and Part-Load Operation
,”
Proceedings of Ecos 2018—The 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
,
Guimarães, Portugal
,
June 17–22
, pp.
1
13
.
35.
Loni
,
R.
,
Pavlovic
,
S.
,
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Asli-Ardeh
,
E. A.
,
2018
, “
Thermal and Exergy Performance of a Nanofluid-Based Solar Dish Collector With Spiral Cavity Receiver
,”
Appl. Therm. Eng.
,
135
, pp.
206
217
. 10.1016/j.applthermaleng.2018.02.070
36.
Patil
,
V. R.
,
Biradar
,
V. I.
,
Shreyas
,
R.
,
Garg
,
P.
,
Orosz
,
M. S.
, and
Thirumalai
,
N. C.
,
2017
, “
Techno-Economic Comparison of Solar Organic Rankine Cycle (ORC) and Photovoltaic (PV) Systems With Energy Storage
,”
Renew. Energy
,
113
, pp.
1250
1260
. 10.1016/j.renene.2017.06.107
37.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Assessment of Linear Solar Concentrating Technologies for Greek Climate
,”
Energy Convers. Manag.
,
171
, pp.
1502
1513
. 10.1016/j.enconman.2018.06.076
38.
Morin
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Häberle
,
A.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy
,
86
(
1
), pp.
1
12
. 10.1016/j.solener.2011.06.020
39.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2018
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072001
. 10.1115/1.4042240
40.
Abid
,
M.
,
Khan
,
M. S.
, and
Hussain Ratlamwala
,
T. A.
,
2019
, “
Thermodynamic Performance Evaluation of a Solar Parabolic Dish Assisted Multigeneration System
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061014
. 10.1115/1.4044022
41.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
. 10.1115/1.4029884
42.
Anon
,
2008
, “
Concentrating Solar Power Projects
,” https://solarpaces.nrel.gov/sites/default/files/project-export.csv, Accessed December 15, 2018.
43.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2012
, “
Optimal Collector Type and Temperature in a Solar Organic Rankine Cycle System for Building-Scale Power Generation in Hot and Humid Climate
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011012
. 10.1115/1.4007300
44.
Ballestrín
,
J.
,
Burgess
,
G.
, and
Cumpston
,
J.
,
2012
, “Heat Flux and Temperature Measurement Technologies for Concentrating Solar Power (CSP),”
Concentrating Solar Power Technology
,
K.
Lovegrove
and
W.
Stein
, eds.,
Woodhead Publishing Series in Energy
,
Philadelphia, PA
, pp.
577
601, e4
.
45.
Turboden
,
2018
, “
ORC Units for Solar Collectors | TURBODEN
,” https://www.turboden.com/applications/1056/concentrated-solar-power, Accessed February 18, 2018.
46.
Botsaris
,
P. N.
,
Pechtelidis
,
A. G.
, and
Lymperopoulos
,
K. A.
,
2019
, “
Modeling, Simulation, and Performance Evaluation Analysis of a Parabolic Trough Solar Collector Power Plant Coupled to an Organic Rankine Cycle Engine in North Eastern Greece Using Trnsys
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061004
. 10.1115/1.4043658
47.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Optimum Number of Internal Fins in Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
137
, pp.
669
677
. 10.1016/j.applthermaleng.2018.04.037
48.
Solapure
,
P. V. S.
,
Ithape
,
S. S.
,
Gugale
,
S. M.
,
Deshmukh
,
P. D.
, and
Bankar
,
S. R.
,
2018
, “
Parabolic Trough Solar Concentrator
,”
Int. J. Manage. Technol. Eng.
,
8
(
IX
), pp.
1275
1284
.
49.
Ghazouani
,
K.
,
Skouri
,
S.
,
Bouadila
,
S.
, and
Guizani
,
A. A.
,
2018
, “
Thermal Study of Solar Parabolic Trough Concentrator
,”
2018 9th International Renewable Energy Congress
,
Hammamet, Tunisia
,
Mar. 20–22
, pp.
1
4
.
50.
Cascio
,
E. L.
,
Ma
,
Z.
, and
Schenone
,
C.
,
2018
, “
Performance Assessment of a Novel Natural Gas Pressure Reduction Station Equipped With Parabolic Trough Solar Collectors
,”
Renew. Energy
,
128
, pp.
177
187
. 10.1016/j.renene.2018.05.058
51.
Mehrpooya
,
M.
,
Tosang
,
E.
, and
Dadak
,
A.
,
2018
, “
Investigation of a Combined Cycle Power Plant Coupled With a Parabolic Trough Solar Field and High Temperature Energy Storage System
,”
Energy Convers. Manag.
,
171
, pp.
1662
1674
. 10.1016/j.enconman.2018.07.001
52.
Quoilin
,
S.
,
Van Den Broek
,
M.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
. 10.1016/j.rser.2013.01.028
53.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Daily, Monthly and Yearly Performance of a Linear Fresnel Reflector
,”
Sol. Energy
,
173
, pp.
517
529
. 10.1016/j.solener.2018.08.008
54.
El Alj
,
S.
,
Al Mers
,
A.
,
Merroun
,
O.
,
Bouatem
,
A.
,
Boutammachte
,
N.
,
Ajdad
,
H.
,
Benyakhlef
,
S.
, and
Filali Baba
,
Y.
,
2017
, “
Optical Modeling and Analysis of the First Moroccan Linear Fresnel Solar Collector Prototype
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041009
. 10.1115/1.4036726
55.
Sarkar
,
J.
,
2015
, “
Review and Future Trends of Supercritical CO2 Rankine Cycle for Low-Grade Heat Conversion
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
434
451
. 10.1016/j.rser.2015.04.039
56.
Moloney
,
F.
,
Almatrafi
,
E.
, and
Goswami
,
D. Y.
,
2017
, “
Working Fluid Parametric Analysis for Regenerative Supercritical Organic Rankine Cycles for Medium Geothermal Reservoir Temperatures
,”
Energy Proc.
,
129
, pp.
599
606
. 10.1016/j.egypro.2017.09.216
57.
Kim
,
Y. M.
,
Sohn
,
J. L.
, and
Yoon
,
E. S.
,
2017
, “
Supercritical CO2 Rankine Cycles for Waste Heat Recovery From Gas Turbine
,”
Energy
,
118
, pp.
893
905
. 10.1016/j.energy.2016.10.106
58.
Hosseinpour
,
J.
,
Chitsaz
,
A.
,
Eisavi
,
B.
, and
Yari
,
M.
,
2018
, “
Investigation on Performance of an Integrated SOFC-Goswami System Using Wood Gasification
,”
Energy
,
148
, pp.
614
628
. 10.1016/j.energy.2018.01.162
59.
Shankar
,
R.
, and
Srinivas
,
T.
,
2018
, “
Performance Investigation of Kalina Cooling Cogeneration Cycles
,”
Int. J. Refrig.
,
86
, pp.
163
185
. 10.1016/j.ijrefrig.2017.11.019
60.
Zhang
,
X.
,
He
,
M.
, and
Zhang
,
Y.
,
2012
, “
A Review of Research on the Kalina Cycle
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5309
5318
. 10.1016/j.rser.2012.05.040
61.
Sun
,
F.
,
Ikegami
,
Y.
,
Arima
,
H.
, and
Zhou
,
W.
,
2012
, “
Performance Analysis of the Low-Temperature Solar-Boosted Power Generation System—Part I: Comparison Between Kalina Solar System and Rankine Solar System
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011006
. 10.1115/1.4007495
62.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
125–130
. 10.1115/1.1885039
63.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
. 10.1115/1.4041093
64.
Fergani
,
Z.
,
Morosuk
,
T.
, and
Touil
,
D.
,
2019
, “
Performances Optimization and Comparison of Two Organic Rankine Cycles for Cogeneration in the Ciment Plant
,”
ASME J. Energy Resour. Technol.
, pp.
1
27
. 10.1115/1.4044223
65.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
. 10.1115/1.4038963
66.
Rao
,
W. J.
,
Zhao
,
L. J.
,
Liu
,
C.
, and
Zhang
,
M. G.
,
2013
, “
A Combined Cycle Utilizing LNG and Low-Temperature Solar Energy
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
51
60
. 10.1016/j.applthermaleng.2013.06.043
67.
Sylvain Quoilin and Vincent LEMORT “Labothap—ORCNext,” Laboratoire de Thermodynamique
, Université de Liège, Belgium, http://www.labothap.ulg.ac.be/cmsms/index.php?page=orcnext-2, Accessed January 26, 2019.
68.
Quoilin
,
S.
,
2008
, “
An Introduction to Thermodynamics Applied to Organic Rankine Cycle
,” STG Int., MIT, https://orbi.uliege.be/handle/2268/138797, Accessed January 26, 2019.
69.
Aboelwafa
,
O.
,
Fateen
,
S. E. K.
,
Soliman
,
A.
, and
Ismail
,
I. M.
,
2018
, “
A Review on Solar Rankine Cycles: Working Fluids, Applications, and Cycle Modifications
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
868
885
. 10.1016/j.rser.2017.09.097
70.
Liang
,
Y.
, and
Yu
,
Z.
,
2019
, “
Working Fluid Selection for a Combined System Based on Coupling of Organic Rankine Cycle and Air Source Heat Pump Cycle
,”
Energy Proc.
, 158, pp.
1485
1490
.
First Presented in 10th International Conference on Applied Energy (ICAE2018)
,
Hong Kong, China
,
Aug. 22–25, 2018
. 10.1016/j.egypro.2019.01.354
71.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renew. Energy
,
36
(
2
), pp.
659
670
. 10.1016/j.renene.2010.07.010
72.
Vivian
,
J.
,
Manente
,
G.
, and
Lazzaretto
,
A.
,
2015
, “
A General Framework to Select Working Fluid and Configuration of ORCs for Low-to-Medium Temperature Heat Sources
,”
Appl. Energy
,
156
, pp.
727
746
. 10.1016/j.apenergy.2015.07.005
73.
Saloux
,
E.
,
Sorin
,
M.
,
Nesreddine
,
H.
, and
Teyssedou
,
A.
,
2018
, “
Reconstruction Procedure of the Thermodynamic Cycle of Organic Rankine Cycles (ORC) and Selection of the Most Appropriate Working Fluid
,”
Appl. Therm. Eng.
,
129
, pp.
628
635
. 10.1016/j.applthermaleng.2017.10.077
74.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2016
, “
Thermo-Economic Analysis and Selection of Working Fluid for Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
95
, pp.
471
481
. 10.1016/j.applthermaleng.2015.11.018
75.
Tzivanidis
,
C.
,
Bellos
,
E.
, and
Antonopoulos
,
K. A.
,
2016
, “
Energetic and Financial Investigation of a Stand-Alone Solar-Thermal Organic Rankine Cycle Power Plant
,”
Energy Convers. Manag.
,
126
, pp.
421
433
. 10.1016/j.enconman.2016.08.033
76.
Dai
,
X.
,
Shi
,
L.
,
An
,
Q.
, and
Qian
,
W.
,
2016
, “
Screening of Hydrocarbons as Supercritical ORCs Working Fluids by Thermal Stability
,”
Energy Convers. Manag.
,
126
, pp.
632
637
. 10.1016/j.enconman.2016.08.024
77.
Invernizzi
,
C. M.
,
Iora
,
P.
,
Manzolini
,
G.
, and
Lasala
,
S.
,
2017
, “
Thermal Stability of N-Pentane, Cyclo-Pentane and Toluene as Working Fluids in Organic Rankine Engines
,”
Appl. Therm. Eng.
,
121
, pp.
172
179
. 10.1016/j.applthermaleng.2017.04.038
78.
Uris
,
M.
,
Linares
,
J. I.
, and
Arenas
,
E.
,
2014
, “
Techno-Economic Feasibility Assessment of a Biomass Cogeneration Plant Based on an Organic Rankine Cycle
,”
Renew. Energy
,
66
, pp.
707
713
. 10.1016/j.renene.2014.01.022
79.
Seshie
,
Y. M.
,
Coulibaly
,
Y.
, and
N’Tsoukpoe
,
K. E.
,
2017
, “
Optimal Operating Conditions of an Organic Rankine Cycle Under Steady Heat Input
,”
J. Energy Power Eng.
,
11
(
12
), pp.
759
770
. 10.17265/1934-8975/2017.12.003
80.
Petrollese
,
M.
,
Oyekale
,
J.
,
Tola
,
V.
, and
Cocco
,
D.
,
2018
, “
Optimal ORC Configuration for the Combined Production of Heat and Power Utilizing Solar Energy and Biomass
,”
Proceedings of ECOS 2018—The 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
,
Guimarães, Portugal
,
June 17–22
, pp.
1
12
.
81.
Danieli
,
P.
,
Rech
,
S.
, and
Lazzaretto
,
A.
,
2019
, “
Supercritical CO2 and Air Brayton-Joule Versus ORC Systems for Heat Recovery From Glass Furnaces: Performance and Economic Evaluation
,”
Energy
,
168
, pp.
295
309
. 10.1016/j.energy.2018.11.089
82.
Hou
,
S.
,
Cao
,
S.
,
Yu
,
L.
,
Zhou
,
Y.
,
Wu
,
Y.
, and
Zhang
,
F. Y.
,
2018
, “
Performance Optimization of Combined Supercritical CO2 Recompression Cycle and Regenerative Organic Rankine Cycle Using Zeotropic Mixture Fluid
,”
Energy Convers. Manage.
,
166
, pp.
187
200
. 10.1016/j.enconman.2018.04.025
83.
Zhang
,
H.
,
Guan
,
X.
,
Ding
,
Y.
, and
Liu
,
C.
,
2018
, “
Energy Analysis of Organic Rankine Cycle (ORC) for Waste Heat Power Generation
,”
J. Clean. Prod.
,
183
, pp.
1207
1215
. 10.1016/j.jclepro.2018.02.170
84.
Freeman
,
J.
,
Guarracino
,
I.
,
Kalogirou
,
S. A.
, and
Markides
,
C. N.
,
2017
, “
A Small-Scale Solar Organic Rankine Cycle Combined Heat and Power System With Integrated Thermal-Energy Storage
,”
Appl. Therm. Eng.
,
127
, pp.
1543
1554
.10.1016/j.applthermaleng.2017.07.163
85.
Navarro-Esbrí
,
J.
,
Molés
,
F.
,
Peris
,
B.
,
Mota-Babiloni
,
A.
,
Pascual Martí
,
J.
,
Collado
,
R.
, and
González
,
M.
,
2017
, “
Combined Cold, Heat and Power System, Based on an Organic Rankine Cycle, Using Biomass as Renewable Heat Source for Energy Saving and Emissions Reduction in a Supermarket
,”
Energy Proc.
,
129
, pp.
652
659
. 10.1016/j.egypro.2017.09.134
86.
Zhang
,
J.
,
Zhao
,
L.
,
Wen
,
J.
, and
Deng
,
S.
,
2016
, “
An Overview of 200 KW Solar Power Plant Based on Organic Rankine Cycle
,”
Energy Procedia
,
88
, pp.
356
362
. 10.1016/j.egypro.2016.06.136
87.
Canada
,
S.
,
Cohen
,
G.
,
Cable
,
R.
,
Brosseau
,
D.
, and
Price
,
H.
,
2005
, “
Parabolic Trough Organic Rankine Cycle Solar Power Plant
,”
2004 DOE Solar Energy Technologies Program Review Meeting
,
Denver, CO
,
Oct. 25–28
, pp.
1
2
.
88.
Raush
,
J. R.
,
Chambers
,
T. L.
,
Russo
,
B.
, and
Ritter
,
K. A.
, III
,
2013
, “
Demonstration of Pilot Scale Large Aperture Parabolic Trough Organic Rankine Cycle Solar Thermal Power Plant in Louisiana
,”
J. Power Energy Eng.
,
2013
, pp.
29
39
. 10.4236/jpee.2013.17006
89.
Heberle
,
F.
,
Hofer
,
M.
, and
Brüggemann
,
D.
,
2017
, “
A Retrofit for Geothermal Organic Rankine Cycles Based on Concentrated Solar Thermal Systems
,”
Energy Proc.
,
129
, pp.
692
699
. 10.1016/j.egypro.2017.09.148
90.
Morrone
,
P.
,
Algieri
,
A.
, and
Castiglione
,
T.
,
2019
, “
Hybridisation of Biomass and Concentrated Solar Power Systems in Transcritical Organic Rankine Cycles: A Micro Combined Heat and Power Application
,”
Energy Convers. Manag.
,
180
, pp.
757
768
. 10.1016/j.enconman.2018.11.029
91.
Khan
,
Y.
, and
Mishra
,
R. S.
,
2018
, “
Thermodynamic (Energy-Exergy) Analysis of Combined Cycle Power Plant for Improving Thermal Energetic and Exergetic Efficiencies by Integration of Organic Rankine Cycle (ORC)
,”
Int. J. Res. Eng. Innovation (IJREI)
,
2
(
1
), pp.
86
92
.
92.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
(
5
), pp.
955
966
. 10.1016/j.solener.2011.02.010
93.
He
,
Y.-L.
,
Mei
,
D.-H.
,
Tao
,
W.-Q.
,
Yang
,
W.-W.
, and
Liu
,
H.-L.
,
2012
, “
Simulation of the Parabolic Trough Solar Energy Generation System With Organic Rankine Cycle
,”
Appl. Energy
,
97
, pp.
630
641
. 10.1016/j.apenergy.2012.02.047
94.
Calise
,
F.
,
Capuozzo
,
C.
,
Carotenuto
,
A.
, and
Vanoli
,
L.
,
2014
, “
Thermoeconomic Analysis and Off-Design Performance of an Organic Rankine Cycle Powered by Medium-Temperature Heat Sources
,”
Sol. Energy
,
103
, pp.
595
609
. 10.1016/j.solener.2013.09.031
95.
Ferrara
,
F.
,
Gimelli
,
A.
, and
Luongo
,
A.
,
2014
, “
Small-Scale Concentrated Solar Power (CSP) Plant: ORCs Comparison for Different Organic Fluids
,”
Energy Proc.
,
45
, pp.
217
226
. 10.1016/j.egypro.2014.01.024
96.
Xu
,
G.
,
Song
,
G.
,
Zhu
,
X.
,
Gao
,
W.
,
Li
,
H.
, and
Quan
,
Y.
,
2015
, “
Performance Evaluation of a Direct Vapor Generation Supercritical ORC System Driven by Linear Fresnel Re Fl Ector Solar Concentrator
,”
Appl. Therm. Eng.
,
80
, pp.
196
204
. 10.1016/j.applthermaleng.2014.12.071
97.
Cocco
,
D.
, and
Cau
,
G.
,
2015
, “
Energy and Economic Analysis of Concentrating Solar Power Plants Based on Parabolic Trough and Linear Fresnel Collectors
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
229
(
6
), pp.
677
688
. 10.1177/0957650915587433
98.
Su
,
W.
,
Hwang
,
Y.
,
Deng
,
S.
,
Zhao
,
L.
, and
Zhao
,
D.
,
2018
, “
Thermodynamic Performance Comparison of Organic Rankine Cycle Between Zeotropic Mixtures and Pure Fl Uids Under Open Heat Source
,”
Energy Convers. Manag.
,
165
, pp.
720
737
. 10.1016/j.enconman.2018.03.071
99.
Wang
,
X. D.
, and
Zhao
,
L.
,
2009
, “
Analysis of Zeotropic Mixtures Used in Low-Temperature Solar Rankine Cycles for Power Generation
,”
Sol. Energy
,
83
(
5
), pp.
605
613
. 10.1016/j.solener.2008.10.006
100.
Mondejar
,
M. E.
,
Andreasen
,
J. G.
,
Regidor
,
M.
,
Riva
,
S.
,
Kontogeorgis
,
G.
,
Persico
,
G.
, and
Haglind
,
F.
,
2017
, “
Prospects of the Use of Nanofluids as Working Fluids for Organic Rankine Cycle Power Systems
,”
Energy Proc.
,
129
, pp.
160
167
. 10.1016/j.egypro.2017.09.098
101.
Li
,
L.
,
Ge
,
Y. T.
,
Luo
,
X.
, and
Tassou
,
S. A.
,
2018
, “
Design and Dynamic Investigation of Low-Grade Power Generation Systems With CO2 Transcritical Power Cycles and R245fa Organic Rankine Cycles
,”
Thermal Sci. Eng. Progr.
,
8
, pp.
211
222
. 10.1016/j.tsep.2018.08.006
102.
Andreasen
,
J.
,
Kærn
,
M.
,
Pierobon
,
L.
,
Larsen
,
U.
, and
Haglind
,
F.
,
2016
, “
Multi-objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids
,”
Energies
,
9
(
5
), pp.
322
336
. 10.3390/en9050322
103.
Dong
,
B.
,
Xu
,
G.
,
Luo
,
X.
,
Zhuang
,
L.
, and
Quan
,
Y.
,
2017
, “
Potential of Low Temperature Organic Rankine Cycle With Zeotropic Mixtures as Working Fluid
,”
Energy Proc.
,
105
, pp.
1489
1494
. 10.1016/j.egypro.2017.03.444
104.
Singh
,
R.
, and
Singh
,
O.
,
2018
, “
Comparative Study of Combined Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Cycle for Different Working Fluid in Bottoming Cycle
,”
Energy Convers. Manage.
,
171
, pp.
659
670
. 10.1016/j.enconman.2018.06.009
105.
Saadatfar
,
B.
,
Fakhrai
,
R.
, and
Fransson
,
T.
,
2014
, “
Conceptual Modeling of Nano Fluid ORC for Solar Thermal Polygeneration
,”
Energy Proc.
,
57
, pp.
2696
2705
. 10.1016/j.egypro.2014.10.301
106.
Saadatfar
,
B.
,
Fakhrai
,
R.
, and
Fransson
,
T.
,
2014
, “
Exergo-Environmental Analysis of Nano Fluid ORC Low-Grade Waste Heat Recovery for Hybrid Trigeneration System
,”
Energy Proc.
,
61
, pp.
1879
1882
. 10.1016/j.egypro.2014.12.233
107.
Dincer
,
I.
, and
Ratlamwala
,
T. A. H.
,
2016
,
Integrated Absorption Refrigeration Systems: Comparative Energy and Exergy Analyses
, (Part of the Green Energy and Technology Book Series (GREEN)),
Springer
,
New York
, pp.
47
69
.
108.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
,
Exergy Analysis of Heating, Refrigerating and Air Conditioning: Methods and Applications
,
Academic Press
,
Cambridge, MA
, pp.
99
129
.
109.
Luyben
,
W. L.
,
2019
, “
Refrigerant Selection for Different Cryogenic Temperatures
,”
Comput. Chem. Eng.
,
126
, pp.
241
248
. 10.1016/j.compchemeng.2019.03.030
110.
Farshi
,
L. G.
,
Infante Ferreira
,
C. A.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2014
, “
First and Second Law Analysis of Ammonia/Salt Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
40
, pp.
111
121
. 10.1016/j.ijrefrig.2013.11.006
111.
Aliane
,
A.
,
Abboudi
,
S.
,
Seladji
,
C.
, and
Guendouz
,
B.
,
2016
, “
An Illustrated Review on Solar Absorption Cooling Experimental Studies
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
443
458
. 10.1016/j.rser.2016.07.012
112.
Anand
,
Y.
,
Tyagi
,
S. K.
, and
Anand
,
S.
,
2018
, “
Variable Capacity Absorption Cooling System Performance for Building Application
,”
J. Therm. Eng.
,
4
(
5
), pp.
2303
2317
. 10.18186/thermal.439041
113.
Shirazi
,
A.
,
Taylor
,
R. A.
,
Morrison
,
G. L.
, and
White
,
S. D.
,
2018
, “
Solar-Powered Absorption Chillers: A Comprehensive and Critical Review
,”
Energy Convers. Manag.
,
171
, pp.
59
81
. 10.1016/j.enconman.2018.05.091
114.
Xu
,
Z. Y.
, and
Wang
,
R. Z.
,
2016
, “
Absorption Refrigeration Cycles: Categorized Based on the Cycle Construction
,”
Int. J. Refrig.
,
62
, pp.
114
136
. 10.1016/j.ijrefrig.2015.10.007
115.
Jelinek
,
M.
,
Levy
,
A.
, and
Borde
,
I.
,
2012
, “
Performance of a Triple-Pressure Level Absorption/Compression Cycle
,”
Appl. Therm. Eng.
,
42
, pp.
2
5
. 10.1016/j.applthermaleng.2011.01.011
116.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
. 10.1115/1.4038918
117.
Sözen
,
A.
,
Özalp
,
M.
, and
Arcaklioǧlu
,
E.
,
2004
, “
Prospects for Utilisation of Solar Driven Ejector-Absorption Cooling System in Turkey
,”
Appl. Therm. Eng.
,
24
(
7
), pp.
1019
1035
. 10.1016/j.applthermaleng.2003.11.011
118.
Vereda
,
C.
,
Ventas
,
R.
,
Lecuona
,
A.
, and
Venegas
,
M.
,
2012
, “
Study of an Ejector-Absorption Refrigeration Cycle With an Adaptable Ejector Nozzle for Different Working Conditions
,”
Appl. Energy
,
97
, pp.
305
312
. 10.1016/j.apenergy.2011.12.070
119.
Ventas
,
R.
,
Vereda
,
C.
,
Lecuona
,
A.
, and
Venegas
,
M.
,
2012
, “
Experimental Study of a Thermochemical Compressor for an Absorption/Compression Hybrid Cycle
,”
Appl. Energy
,
97
, pp.
297
304
. 10.1016/j.apenergy.2011.11.052
121.
Besagni
,
G.
,
Mereu
,
R.
, and
Inzoli
,
F.
,
2016
, “
Ejector Refrigeration: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
373
407
. 10.1016/j.rser.2015.08.059
122.
Zhang
,
T.
, and
Mohamed
,
S.
,
2014
, “
Conceptual Design and Analysis of Hydrocarbon-Based Solar Thermal Power and Ejector Cooling Systems in Hot Climates
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021001
. 10.1115/1.4028365
123.
Sözen
,
A.
, and
Yücesu
,
H. S.
,
2007
, “
Performance Improvement of Absorption Heat Transformer
,”
Renew. Energy
,
32
(
2
), pp.
267
284
. 10.1016/j.renene.2006.01.017
124.
Chen
,
L.-T.
,
1988
, “
A New Ejector-Absorber Cycle to Improve the COP of an Absorption Refrigeration System
,”
Appl. Energy
,
30
(
1
), pp.
37
51
. 10.1016/0306-2619(88)90053-0
125.
Little
,
A. B.
, and
Garimella
,
S.
,
2011
, “
A Review of Ejector Technology for Refrigeration Applications
,”
Int. J. Air-Conditioning Refrig.
,
19
(
1
), pp.
1
15
. 10.1142/S2010132511000351
126.
Levy
,
A.
,
Jelinek
,
M.
, and
Borde
,
I.
,
2002
, “
Numerical Study on the Design Parameters of a Jet Ejector for Absorption Systems
,”
Appl. Energy
,
72
(
2
), pp.
467
478
. 10.1016/S0306-2619(02)00023-5
127.
Levy
,
A.
,
Jelinek
,
M.
,
Borde
,
I.
, and
Ziegler
,
F.
,
2004
, “
Performance of an Advanced Absorption Cycle With R125 and Different Absorbents
,”
Energy
,
29
(
12–15
), pp.
2501
2515
. 10.1016/j.energy.2004.03.045
128.
Jelinek
,
M.
,
Levy
,
A.
, and
Borde
,
I.
,
2008
, “
The Performance of a Triple Pressure Level Absorption Cycle (TPLAC) With Working Fluids Based on the Absorbent DMEU and the Refrigerants R22, R32, R124, R125, R134a and R152a
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1551
1555
. 10.1016/j.applthermaleng.2008.01.023
129.
Liang
,
X.
,
Zhou
,
S.
,
Deng
,
J.
,
He
,
G.
, and
Cai
,
D.
,
2019
, “
Thermodynamic Analysis of a Novel Combined Double Ejector-Absorption Refrigeration System Using Ammonia/Salt Working Pairs Without Mechanical Pumps
,”
Energy
,
185
, pp.
895
909
. 10.1016/j.energy.2019.07.104
130.
Vereda
,
C.
,
Ventas
,
R.
,
Lecuona
,
A.
, and
López
,
R.
,
2014
, “
Single-Effect Absorption Refrigeration Cycle Boosted With an Ejector-Adiabatic Absorber Using a Single Solution Pump
,”
Int. J. Refrig.
,
38
(
1
), pp.
22
29
. 10.1016/j.ijrefrig.2013.10.010
131.
Sun
,
D.-W.
,
Eames
,
I. W.
, and
Aphornratana
,
S.
,
1996
, “
Evaluation of a Novel Combined Ejector-Absorption Refrigeration Cycle—I: Computer Simulation
,”
Int. J. Refrig.
,
19
(
3
), pp.
172
180
. 10.1016/0140-7007(96)00010-2
132.
Chen
,
J.
,
Havtun
,
H.
, and
Palm
,
B.
,
2014
, “
Investigation of Ejectors in Refrigeration System: Optimum Performance Evaluation and Ejector Area Ratios Perspectives
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
182
191
. 10.1016/j.applthermaleng.2013.12.034
133.
Nguyen
,
V.
,
Riffat
,
S.
, and
Doherty
,
P.
,
2001
, “
Development of a Solar-Powered Passive Ejector Cooling System
,”
Appl. Therm. Eng.
,
21
(
2
), pp.
157
168
. 10.1016/S1359-4311(00)00032-6
134.
Dennis
,
M.
, and
Garzoli
,
K.
,
2011
, “
Use of Variable Geometry Ejector With Cold Store to Achieve High Solar Fraction for Solar Cooling
,”
Int. J. Refrig.
,
34
(
7
), pp.
1626
1632
. 10.1016/j.ijrefrig.2010.08.006
135.
Abed
,
A. M.
,
Alghoul
,
M. A.
,
Sopian
,
K.
,
Majdi
,
H. S.
,
Al-Shamani
,
A. N.
, and
Muftah
,
A. F.
,
2017
, “
Enhancement Aspects of Single Stage Absorption Cooling Cycle: A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
1010
1045
. 10.1016/j.rser.2016.11.231
136.
Hong
,
D.
,
Chen
,
G.
,
Tang
,
L.
, and
He
,
Y.
,
2011
, “
A Novel Ejector-Absorption Combined Refrigeration Cycle
,”
Int. J. Refrig.
,
34
(
7
), pp.
1596
1603
. 10.1016/j.ijrefrig.2010.07.007
137.
Abdulateef
,
J. M.
,
Murad
,
N. M.
,
Alghoul
,
M. A.
,
Zaharim
,
A.
, and
Sopian
,
K.
,
2011
, “
Experimental Study on Combined Solar-Assisted Ejector Absorption Refrigeration System
,”
Recent Res. Geogr. Geol.
, pp.
162
166
. 10.1016/j.solener.2013.01.018
138.
Garousi Farshi
,
L.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2013
, “
Exergoeconomic Comparison of Double Effect and Combined Ejector-Double Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
103
, pp.
700
711
. 10.1016/j.apenergy.2012.11.022
139.
Garousi Farshi
,
L.
,
Mosaffa
,
A. H.
,
Infante Ferreira
,
C. A.
, and
Rosen
,
M. A.
,
2014
, “
Thermodynamic Analysis and Comparison of Combined Ejector–Absorption and Single Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
133
, pp.
335
346
. 10.1016/j.apenergy.2014.07.102
140.
Abed
,
A. M.
,
Sopian
,
K.
,
Alghoul
,
M. A.
,
Majadi
,
H. S.
, and
Al-Shamani
,
A. N.
,
2017
, “
Experimental Evaluation of Single Stage Ejector-Absorption Cooling Cycle Under Different Design Configurations
,”
Sol. Energy
,
155
, pp.
130
141
. 10.1016/j.solener.2017.06.005
141.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
221–227
. 10.1115/1.1595110
142.
Goswami
,
D. Y.
, and
Xu
,
F.
,
1999
, “
Analysis of a New Thermodynamic Cycle for Combined Power and Cooling Using Low and Mid Temperature Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
121
(
2
), pp.
91–97
. 10.1115/1.2888152
143.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021204
. 10.1115/1.4026202
144.
Singh
,
G.
, and
Das
,
R.
,
2019
, “
A Novel Design of Triple-Hybrid Absorption Radiant Building Cooling System With Desiccant Dehumidification
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072002
. 10.1115/1.4042239
145.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
. 10.1115/1.4042408
146.
Leiva-Illanes
,
R.
,
Escobar
,
R.
,
Cardemil
,
J. M.
,
Alarcón-Padilla
,
D.-C.
,
Uche
,
J.
, and
Martínez
,
A.
,
2019
, “
Exergy Cost Assessment of CSP Driven Multi-Generation Schemes: Integrating Seawater Desalination, Refrigeration, and Process Heat Plants
,”
Energy Convers. Manag.
,
179
, pp.
249
269
. 10.1016/j.enconman.2018.10.050
147.
Qiu
,
S.
,
Gao
,
Y.
,
Rinker
,
G.
, and
Yanaga
,
K.
,
2019
, “
Development of an Advanced Free-Piston Stirling Engine for Micro Combined Heating and Power Application
,”
Appl. Energy
,
235
, pp.
987
1000
. 10.1016/j.apenergy.2018.11.036
148.
Arabkoohsar
,
A.
,
2018
, “
An Integrated Subcooled-CAES and Absorption Chiller System for Cogeneration of Cold and Power
,”
2018 International Conference on Smart Energy Systems and Technologies
,
Sevilla, Spain
,
Sept. 10–12
, pp.
1
5
.
149.
Arabkoohsar
,
A.
, and
Andresen
,
G. B.
,
2019
, “
Design and Optimization of a Novel System for Trigeneration
,”
Energy
,
168
, pp.
247
260
. 10.1016/j.energy.2018.11.086
150.
Mosaffa
,
A. H.
,
Ghaffarpour
,
Z.
, and
Garousi Farshi
,
L.
,
2019
, “
Thermoeconomic Assessment of a Novel Integrated CHP System Incorporating Solar Energy Based Biogas-Steam Reformer With Methanol and Hydrogen Production
,”
Sol. Energy
,
178
, pp.
1
16
. 10.1016/j.solener.2018.12.011
151.
Calise
,
F.
,
Libertini
,
L.
, and
Vicidomini
,
M.
,
2018
, “
Dynamic Simulation and Thermoeconomic Analysis of a Novel Solar Cooling System for a Triple-Pressure Combined Cycle Power Plant
,”
Energy Convers. Manag.
,
170
, pp.
82
96
. 10.1016/j.enconman.2018.05.041
152.
Dunham
,
M. T.
, and
Lipinski
,
W.
,
2013
, “
Thermodynamic Analyses of Single Brayton and Combined Brayton–Rankine Cycles for Distributed Solar Thermal Power Generation
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031008
. 10.1115/1.4023591
153.
Khan
,
M. S.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Energy, Exergy and Economic Feasibility Analyses of a 60 MW Conventional Steam Power Plant Integrated With Parabolic Trough Solar Collectors Using Nanofluids
,”
Iranian J. Sci. Technol. Trans. Mech. Eng.
,
43
(
1
), pp.
193
209
. 10.1007/s40997-018-0149-x
154.
Rostamzadeh
,
H.
,
Gargari
,
S. G.
,
Namin
,
A. S.
, and
Ghaebi
,
H.
,
2019
, “
A Novel Multigeneration System Driven by a Hybrid Biogas-Geothermal Heat Source, Part II: Multi-Criteria Optimization
,”
Energy Convers. Manag.
,
180
, pp.
859
888
. 10.1016/j.enconman.2018.11.035
155.
Dabwan
,
Y. N.
,
Pei
,
G.
,
Gao
,
G.
,
Li
,
J.
, and
Feng
,
J.
,
2019
, “
Performance Analysis of Integrated Linear Fresnel Reflector With a Conventional Cooling, Heat, and Power Tri-Generation Plant
,”
Renew. Energy
,
138
(
C
), pp.
639
650
. 10.1016/j.renene.2019.01.098
156.
Mokheimer
,
E. M. A.
, and
Dabwan
,
Y. N.
,
2018
, “
Performance Analysis of Integrated Solar Tower With a Conventional Heat and Power Co-Generation Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021201
. 10.1115/1.4041409
157.
Dabwan
,
Y. N.
,
Gang
,
P.
,
Li
,
J.
,
Gao
,
G.
, and
Feng
,
J.
,
2018
, “
Development and Assessment of Integrating Parabolic Trough Collectors With Gas Turbine Trigeneration System for Producing Electricity, Chilled Water, and Freshwater
,”
Energy
,
162
, pp.
364
379
. 10.1016/j.energy.2018.07.211
158.
Bellos
,
E.
,
Vellios
,
L.
,
Theodosiou
,
I. C.
, and
Tzivanidis
,
C.
,
2018
, “
Investigation of a Solar-Biomass Polygeneration System
,”
Energy Convers. Manag.
,
173
, pp.
283
295
. 10.1016/j.enconman.2018.07.093
159.
Yilmaz
,
F.
,
Ozturk
,
M.
, and
Selbas
,
R.
,
2019
, “
Energy and Exergy Performance Assessment of a Novel Solar-Based Integrated System With Hydrogen Production
,”
Int. J. Hydrogen Energy
,
44
(
34
), pp.
18732
18743
. 10.1016/j.ijhydene.2018.10.118
160.
Abed
,
K. A.
,
Amin
,
A. M.
,
El-Samahy
,
A. A.
, and
Shaaban
,
A. M.
,
2018
, “
Modeling and Simulation of Multi Purposes Concentrated Solar Power System
,”
Eur. J. Adv. Eng. Technol.
,
5
(
6
), pp.
375
385
.
161.
Patel
,
B.
,
Desai
,
N. B.
, and
Kachhwaha
,
S. S.
,
2017
, “
Thermo-Economic Analysis of Solar-Biomass Organic Rankine Cycle Powered Cascaded Vapor Compression-Absorption System
,”
Sol. Energy
,
157
, pp.
920
933
. 10.1016/j.solener.2017.09.020
162.
Patel
,
B.
,
Desai
,
N. B.
,
Kachhwaha
,
S. S.
,
Jain
,
V.
, and
Hadia
,
N.
,
2017
, “
Thermo-Economic Analysis of a Novel Organic Rankine Cycle Integrated Cascaded Vapor Compression–Absorption System
,”
J. Clean. Prod.
,
154
, pp.
920
933
. 10.1016/j.jclepro.2017.03.220
163.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2015
, “
Thermodynamic Modelling and Parametric Study of a Low Temperature Vapour Compression-Absorption System Based on Modified Gouy-Stodola Equation
,”
Energy
,
79
(
C
), pp.
407
418
. 10.1016/j.energy.2014.11.027
164.
Jain
,
V.
,
Kachhwaha
,
S. S.
, and
Sachdeva
,
G.
,
2013
, “
Thermodynamic Performance Analysis of a Vapor Compression—Absorption Cascaded Refrigeration System
,”
Energy Convers. Manag.
,
75
, pp.
685
700
. 10.1016/j.enconman.2013.08.024
165.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2009
, “
Process Integration of Organic Rankine Cycle
,”
Energy
,
34
(
10
), pp.
1674
1686
. 10.1016/j.energy.2009.04.037
166.
Nikolaidis
,
C.
, and
Probert
,
D.
,
1998
, “
Exergy-Method Analysis of a Two-Stage Vapour- Compression Refrigeration-Plants Performance
,”
Applied Energy
,
60
(
4
), pp.
241
256
. 10.1016/S0306-2619(98)00030-0
167.
Tchanche
,
B. F.
,
Lambrinos
,
G.
,
Frangoudakis
,
A.
, and
Papadakis
,
G.
,
2010
, “
Exergy Analysis of Micro-Organic Rankine Power Cycles for a Small Scale Solar Driven Reverse Osmosis Desalination System
,”
Appl. Energy
,
87
(
4
), pp.
1295
1306
. 10.1016/j.apenergy.2009.07.011
168.
Nikulshin
,
V.
,
Wu
,
C.
, and
Nikulshina
,
V.
,
2002
, “
Exergy Efficiency Calculation of Energy Intensive Systems by Graphs
,”
Int. J. Appl. Thermodyn.
,
5
(
2
), pp.
67
74
. 10.1016/s1164-0235(01)00042-5
169.
Nikulshin
,
V.
, and
Wu
,
C.
,
2001
, “
Thermodynamic Analysis of Energy Intensive Systems Based on Exergy–Topological Models
,”
Exergy, An Int. J.
,
1
(
3
), pp.
173
179
. 10.1016/S1164-0235(01)00023-1
170.
Nikulshin
,
V.
,
Bailey
,
M.
, and
Nikulshina
,
V.
,
2006
, “
Thermodynamic Analysis of Air Refrigerator on Exergy Graph
,”
Therm. Sci.
,
10
(
1
), pp.
99
110
. 10.2298/TSCI0601099N
171.
Jradi
,
M.
, and
Riffat
,
S.
,
2014
, “
Experimental Investigation of a Biomass-Fuelled Micro-Scale Tri-Generation System With an Organic Rankine Cycle and Liquid Desiccant Cooling Unit
,”
Energy
,
71
, pp.
80
93
. 10.1016/j.energy.2014.04.077
172.
Desai
,
N. B.
,
Kedare
,
S. B.
, and
Bandyopadhyay
,
S.
,
2014
, “
ScienceDirect Optimization of Design Radiation for Concentrating Solar Thermal Power Plants Without Storage
,”
Sol. Energy
,
107
, pp.
98
112
. 10.1016/j.solener.2014.05.046
173.
Ramaswamy
,
M. A.
,
Rao
,
B. S.
,
Thirumalai
,
N. C.
, and
Suresh
,
N. S.
,
2013
, “
Estimation of Hourly Direct Normal Irradiance (DNI) for 22 Stations in India
,”
Center for Study of Science Technology and Policy
,
Bangalore
, http://www.cstep.in/drupal/node/354, Accessed June 13, 2019.
174.
Baghernejad
,
A.
,
Yaghoubi
,
M.
, and
Jafarpur
,
K.
,
2016
, “
Exergoeconomic Optimization and Environmental Analysis of a Novel Solar-Trigeneration System for Heating, Cooling and Power Production Purpose
,”
Sol. Energy
,
134
, pp.
165
179
. 10.1016/j.solener.2016.04.046
175.
Kalogirou
,
S. A.
,
2016
,
Advances in Solar Heating and Cooling
,
Woodhead Publishing Series in Energy: Number 102
,
Cambridge, MA
, pp.
63
80
.
176.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Thermal Processes
,
4th ed.
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
323
370
.
177.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
178.
Buonomano
,
A.
,
Calise
,
F.
,
Palombo
,
A.
, and
Vicidomini
,
M.
,
2015
, “
Energy and Economic Analysis of Geothermal—Solar Trigeneration Systems : A Case Study for a Hotel Building in Ischia
,”
Appl. Energy
,
138
, pp.
224
241
. 10.1016/j.apenergy.2014.10.076
179.
Boyaghchi
,
F. A.
,
Mahmoodnezhad
,
M.
, and
Sabeti
,
V.
,
2016
, “
Exergoeconomic Analysis and Optimization of a Solar Driven Dual-Evaporator Vapor Compression-Absorption Cascade Refrigeration System Using Water/CuO Nanofluid
,”
J. Clean. Prod.
,
139
, pp.
970
985
. 10.1016/j.jclepro.2016.08.125
180.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2011
, “
Exergy Modeling of a New Solar Driven Trigeneration System
,”
Sol. Energy
,
85
(
9
), pp.
2228
2243
. 10.1016/j.solener.2011.06.009
181.
Al-Sulaiman
,
F. A.
,
Hamdullahpur
,
F.
, and
Dincer
,
I.
,
2012
, “
Performance Assessment of a Novel System Using Parabolic Trough Solar Collectors for Combined Cooling, Heating, and Power Production
,”
Renew. Energy
,
48
, pp.
161
172
. 10.1016/j.renene.2012.04.034
182.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2012
, “
Energy and Exergy Analyses of a Biomass Trigeneration System Using an Organic Rankine Cycle
,”
Energy
,
45
(
1
), pp.
975
985
. 10.1016/j.energy.2012.06.060
183.
Suleman
,
F.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2014
, “
Development of an Integrated Renewable Energy System for Multigeneration
,”
Energy
,
78
, pp.
196
204
. 10.1016/j.energy.2014.09.082
184.
Tsoutsos
,
T.
,
Frantzeskaki
,
N.
, and
Gekas
,
V.
,
2005
, “
Environmental Impacts From the Solar Energy Technologies
,”
Energy Policy
,
33
(
3
), pp.
289
296
. 10.1016/S0301-4215(03)00241-6
185.
Desideri
,
U.
,
Zepparelli
,
F.
,
Morettini
,
V.
, and
Garroni
,
E.
,
2013
, “
Comparative Analysis of Concentrating Solar Power and Photovoltaic Technologies: Technical and Environmental Evaluations
,”
Appl. Energy
,
102
, pp.
765
784
. 10.1016/j.apenergy.2012.08.033
You do not currently have access to this content.