Abstract

CO2 displacement has been proposed to enhance shale gas recovery and unlock a big potential market for CO2 beneficial utilization. Theoretically, gas adsorption is inversely related to the temperature, so gas can be desorbed by elevating the temperature. This paper investigates the economic performance of enhancing shale gas recovery by injecting CO2 at high temperatures through displacement as well as desorption by rising temperatures. Influences of operation temperature and injection pressure were studied for three potential shale plays in China. Study results show that both factors exerted obvious impacts, and CO2 procurement was the largest cost component. It is found that the net revenue was not always proportional to the operation temperature, but more controlled by the injection–production ratio. This is because of the different temperature impacts to the various patterns of adsorbed CH4 and CO2 contents. Consequently, in some cases, more CO2 is needed to displace CH4 when operation temperature is raised, resulting a higher cost. The modeling results demonstrate that based on the adsorption characters of reservoirs, the productivity and profitability of CO2 enhanced gas recovery can be further improved by choosing appropriate operation temperatures.

References

References
1.
Zhai
,
Z. Q.
,
Wang
,
X. Q.
,
Jin
,
X.
,
Sun
,
L.
,
Li
,
J. M.
, and
Cao
,
D. P.
,
2014
, “
Adsorption and Diffusion of Shale Gas Reservoirs in Modeled Clay Minerals at Different Geological Depths
,”
Energy Fuels
,
28
(
12
), pp.
7467
7473
. 10.1021/ef5023434
2.
Teng
,
B. L.
,
Cheng
,
L. S.
,
Huang
,
S. J.
, and
Andy Li
,
H. Z.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
. 10.1115/1.4038781
3.
Wang
,
J. G.
,
Gu
,
D. H.
,
Guo
,
W.
,
Zhang
,
H. J.
, and
Yang
,
D. Y.
,
2018
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012907
. 10.1115/1.4040755
4.
Boyer
,
C.
,
Kieschnick
,
J.
,
Suarez-Rivera
,
R.
,
Lewis
,
R. E.
, and
Waters
,
G.
,
2006
, “
Producing gas From its Source
,”
Oilfield Rev.
,
18
(
3
), pp.
36
49
.
5.
Pei
,
P.
,
Ling
,
K. G.
,
He
,
J.
, and
Liu
,
Z. Z.
,
2015
, “
Shale gas Reservoir Treatment by a CO2-Based Technology
,”
J. Nat. Gas Sci. Eng.
,
26
(
Sept.
), pp.
1595
1606
. 10.1016/j.jngse.2015.03.026
6.
Zou
,
J.
,
Rezaee
,
R.
, and
Liu
,
K.
,
2017
, “
Effect of Temperature on Methane Adsorption in Shale Gas Reservoirs
,”
Energy Fuels
,
31
(
11
), pp.
12081
12092
. 10.1021/acs.energyfuels.7b02639
7.
Euzen
,
T.
,
2011
, “
Shale Gas—an Overview
,” IFP Canada Internal Report, http://ifp-canada.com/wp-content/uploads/2014/01/IFP_Canada_Shale_Gas_Report.pdf
8.
Langmuir
,
I.
,
1916
, “
The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids
,”
J. Am. Chem. Soc.
,
38
(
11
), pp.
2221
2295
. 10.1021/ja02268a002
9.
Pei
,
P.
,
Barse
,
K.
,
Gil
,
A.
, and
Nasah
,
J.
,
2014
, “
Waste Recovery in CO2 Compression
,”
Int. J. Greenhouse Gas Control
,
30
(
Nov.
), pp.
86
96
. 10.1016/j.ijggc.2014.09.001
10.
Du
,
X. D.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2016
, “
Investigation of CO2-CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012909
. 10.1115/1.4035148
11.
Du
,
X. D.
,
Min
,
G.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2017
, “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2-CH4 Displacement in Shale
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012907
. 10.1115/1.4037687
12.
Wang
,
J.
,
Ryan
,
D.
,
Szabries
,
M.
, and
Jaeger
,
P.
,
2019
, “
A Study for Using CO2 To Enhance Natural Gas Recovery From Tight Reservoirs
,”
Energy Fuels
,
33
(
5
), pp.
3821
3827
. 10.1021/acs.energyfuels.8b04464
13.
Liu
,
F. Y.
,
Ellet
,
K.
,
Xiao
,
Y. T.
, and
Rupp
,
J. A.
,
2013
, “
Assessing the Feasibility of CO2, Storage in the New Albany Shale (Devonian-Mississippian) With Potential Enhanced Gas Recovery Using Reservoir Simulation
,”
Int. J. Greenhouse Gas Control
,
17
, pp.
111
126
. 10.1016/j.ijggc.2013.04.018
14.
Busch
,
A.
,
Alles
,
S.
,
Gensterblum
,
Y.
,
Prinz
,
D.
,
Dewhurst
,
D. N.
,
Raven
,
M. D.
,
Stanjek
,
H.
, and
Krooss
,
B. M.
,
2008
, “
Carbon Dioxide Storage Potential of Shales
,”
Int. J. Greenhouse Gas Control
,
2
(
3
), pp.
297
308
. 10.1016/j.ijggc.2008.03.003
15.
Blok
,
K.
,
Williams
,
R. H.
,
Katofsky
,
R. E.
, and
Hendriks
,
C. A.
,
1997
, “
Hydrogen Production From Natural gas, Sequestration of Recovered CO2 in Depleted Gas Wells and Enhanced Natural gas Recovery
,”
Energy
,
22
(
2–3
), pp.
161
168
. 10.1016/S0360-5442(96)00136-3
16.
Oldenburg
,
C. M.
,
2003
, “
Carbon Sequestration in Natural Gas Reservoirs: Enhanced Gas
,
TOUGH Symposium 2003
,
Lawrence Berkeley National Laboratory, Berkeley, California
,
May 12–14
.
17.
Mao
,
R. Y.
,
Zhang
,
J.
,
Pei
,
P.
,
Xie
,
Z.
, and
Zhou
,
X.
,
2018
, “
Adsorption Characteristics of Clay-Organic Complexes and Their Role in Shale gas Resource Evaluation
,”
Energy Sci. Eng.
,
7
(
1
), pp.
108
119
. 10.1002/ese3.261
18.
Stephenson
,
M. H.
,
2016
, “
Shale gas in North America and Europe
,”
Energy Sci. Eng.
,
4
(
1
), pp.
4
13
. 10.1002/ese3.96
19.
Striolo
,
A.
, and
Cole
,
D. R.
,
2017
, “
Understanding Shale Gas: Recent Progress and Remaining Challenges
,”
Energy Fuels
,
31
(
10
), pp.
10300
10310
. 10.1021/acs.energyfuels.7b01023
20.
Myers
,
A. L.
, and
Prausnitz
,
J. M.
,
1965
, “
Thermodynamics of Mixed-gas Adsorption
,”
AIChE J.
,
11
(
1
), pp.
121
127
. 10.1002/aic.690110125
21.
Arri
,
L. E.
,
Yee
,
D.
,
Morgan
,
W. D.
, and
Jeansonne
,
M. W.
,
1992
, “
Modeling Coalbed Methane Production With Binary Gas Sorption
,”
SPE Rocky Mountain Regional Meeting
,
Wyoming
,
May 18–21
,
Casper
, SPE Paper No. SPE 24363.
22.
Economides
,
M. J.
,
Hill
,
D. A.
, and
Ehilig-Economides
,
C.
,
1993
,
Petroleum Production Systems
,
Prentice-Hall Inc.
,
Upper Saddle River, New Jersey
.
23.
Moran
,
M.
, and
Shapiro
,
H.
,
2000
,
Fundamentals of Engineering Thermodynamics
, 4th ed.,
John Wiley & Sons Inc
,
Hoboken, NJ
.
24.
Mian
,
M. A.
,
2011
,
Project Economics and Decision Analysis: Deterministic Models
, 2nd ed., Vol.
1
,
PennWell Corp
,
Tulsa, Oklahoma
.
25.
Meng
,
X. B.
, and
Wang
,
J. X.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
. 10.1115/1.4043747
26.
Yang
,
F.
,
Yue
,
C. T.
,
Li
,
S. Y.
,
Ma
,
Y.
, and
Xu
,
X. Y.
,
2017
, “
Adsorption Characteristics of CH4 and CO2 on Silurian Shale in Sichuan Basin
,”
CIESC J.
,
68
(
10
), pp.
3851
3859
.
27.
Liu
,
Q. L.
,
2017
, “
Study on the Influence of Super-Critical CO2 Treatment on the Microstructure and CH4/CO2 Adsorption Characteristics of Shale
,”
Master thesis
,
Chongqing University
,
Chongqing, China
.
28.
Li
,
W. W.
,
2017
, “
Experimental Study on Shale gas Adsorption Characteristics of Niutitang Shale in Guizhou Province
,” Master thesis,
Guizhou University
,
Guiyang, China
.
29.
Weniger
,
P.
,
Kalkreuth
,
W.
,
Busch
,
A.
, and
Krooss
,
B. M.
,
2010
, “
High-pressure Methane and Carbon Dioxide Sorption on Coal and Shale Samples From the Parana Basin, Brazil
,”
Int. J. Coal Geol.
,
84
(
3–4
), pp.
190
205
. 10.1016/j.coal.2010.08.003
30.
Chalmers
,
G. R.
,
Bustin
,
R. M.
, and
Power
,
I. M.
,
2012
, “
Characterization of gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples From the Barnett, Woodford, Haynesville, Marcellus, and Doig Units
,”
AAPG Bull.
,
96
(
6
), pp.
1099
1119
. 10.1306/10171111052
31.
Gasparik
,
M.
,
Bertier
,
P.
,
Gensterblum
,
Y.
,
Ghanizadeh
,
A.
,
Krooss
,
B. M.
, and
Littke
,
R.
,
2014
, “
Geological Controls on the Methane Storage Capacity in Organic-Rich Shales
,”
Int. J. Coal Geol.
,
123
(
2
), pp.
34
51
. 10.1016/j.coal.2013.06.010
You do not currently have access to this content.