Abstract

In this study, the thermophotovoltaic (TPV)-driven thermionic refrigerator (TIR) is presented as an alternative refrigerator operated by the solar energy. Solar energy is the main energy source and its performance is analyzed. Power output density of the TPV, cooling rate density, COP, exergy destruction rate densities, and exergy efficiencies are the considered parameters. Calculations are performed numerically; results are presented and discussed. The most suitable operation conditions are defined. According to the results, the cooling rate density is 648 W/m2, power output densities are 1189.86 W/m2 and 667.234 W/m2 for the eg = 0.3 eV and eg = 0.4 eV, and the exergy efficiency of the system is about 0.071.

References

1.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Qandil
,
H. D.
,
Al-Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
A Stand-Alone Hybrid Photovoltaic, Fuel Cell, and Battery System: Case Studies in Jordan
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111202
. 10.1115/1.4043708
2.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl-H2O and LiBr-H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
. 10.1115/1.4038918
3.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072001
. 10.1115/1.4042240
4.
Xuan
,
X. C.
,
2002
, “
Combined Thermionic-Thermoelectric Refrigerator
,”
J. Appl. Phys.
,
92
(
8
), pp.
4746
4750
. 10.1063/1.1509101
5.
Nolas
,
G. S.
, and
Goldsmid
,
H. J.
,
1999
, “
A Comparison of Projected Thermoelectric and Thermionic Refrigerators
,”
J. Appl. Phys.
,
85
(
8
), pp.
4066
4070
. 10.1063/1.370311
6.
Yang
,
Z.
,
Peng
,
W.
,
Liao
,
T.
,
Zhao
,
Y.
,
Lin
,
G.
, and
Chen
,
J.
,
2017
, “
An Efficient Method Exploiting the Waste Heat From a Direct Carbon Fuel Cell by Means of a Thermophotovoltaic Cell
,”
Energy Convers. Manage.
,
149
(
Oct.
), pp.
424
431
. 10.1016/j.enconman.2017.07.040
7.
Ye
,
Z.
,
Zhang
,
X.
,
Li
,
W.
,
Su
,
G.
, and
Chen
,
J.
,
2018
, “
Optimum Operation States and Parametric Selection Criteria of a High Temperature Fuel Cell-Thermoradiative Cell System
,”
Energy Convers. Manage.
,
173
(
Oct.
), pp.
470
475
. 10.1016/j.enconman.2018.07.101
8.
Dong
,
Q.
,
Cai
,
L.
,
Liao
,
T.
,
Zhou
,
Y.
, and
Chen
,
J.
,
2017
, “
An Efficient Coupling System Using a Thermophotovoltaic Cell to Harvest the Waste Heat From a Reforming Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17221
17228
. 10.1016/j.ijhydene.2017.05.201
9.
Liao
,
T.
,
Cai
,
L.
,
Zhao
,
Y.
, and
Chen
,
J.
,
2016
, “
Efficiently Exploiting the Waste Heat in Solid Oxide Fuel Cell by Means of Thermophotovoltaic Cell
,”
J. Power Sources
,
306
(
Feb.
), pp.
666
673
. 10.1016/j.jpowsour.2015.12.080
10.
Huang
,
C.
,
Pan
,
Y.
,
Wang
,
Y.
,
Su
,
G.
, and
Chen
,
J.
,
2016
, “
An Efficient Hybrid System Using a Thermionic Generator to Harvest Waste Heat From a Reforming Molten Carbonate Fuel Cell
,”
Energy Convers. Manage.
,
121
(
Aug.
), pp.
186
193
. 10.1016/j.enconman.2016.05.028
11.
Liu
,
T.
, and
Yang
,
Z.
,
2018
, “
Performance Assessment and Optimization of a Thermophotovoltaic Converter–Thermoelectric Generator Combined System
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072010
. 10.1115/1.4039629
12.
Li
,
H.
,
Chen
,
Y.
,
Yan
,
Y.
,
Hu
,
C.
,
Fan
,
H.
, and
Feng
,
S.
,
2018
, “
Numerical Study on Heat Transfer Enhanced in a Microcombustor With Staggered Cylindrical Array for Micro-Thermophotovoltaic System
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112204
. 10.1115/1.4040191
13.
Schubnell
,
M.
,
Benz
,
P.
, and
Mayor
,
J. C.
,
1998
, “
Design of a Thermophotovoltaic Residential Heating System
,”
Sol. Energy Mater. Sol. Cells
,
52
(
1–2
), pp.
1
9
. 10.1016/S0927-0248(97)00253-5
14.
Xuan
,
Y.
,
Chen
,
X.
, and
Han
,
Y.
,
2011
, “
Design and Analysis of Solar Thermophotovoltaic Systems
,”
Renewable Energy
,
36
(
1
), pp.
374
387
. 10.1016/j.renene.2010.06.050
15.
Wu
,
X.
,
Ye
,
H.
, and
Wang
,
J.
,
2011
, “
Experimental Analysis of Cell Output Performance for a TPV System
,”
Sol. Energy Mater. Sol. Cells
,
95
(
8
), pp.
2459
2465
. 10.1016/j.solmat.2011.04.032
16.
Harder
,
N. P.
, and
Würfel
,
P.
,
2003
, “
Theoretical Limits of Thermophotovoltaic Solar Energy Conversion
,”
Semicond. Sci. Technol.
,
18
(
5
), pp.
S151
S157
. 10.1088/0268-1242/18/5/303
17.
Chen
,
L.
,
Ding
,
Z.
, and
Sun
,
F.
,
2010
, “
Performance Analysis of a Vacuum Thermionic Refrigerator With External Heat Transfer
,”
J. Appl. Phys.
,
107
(
10
), p.
104507
. 10.1063/1.3428419
18.
Mahan
,
G. D.
,
1994
, “
Thermionic Refrigeration
,”
J. Appl. Phys.
,
76
(
7
), pp.
4362
4366
. 10.1063/1.357324
19.
Li
,
D.
,
Xuan
,
Y.
,
Li
,
Q.
, and
Hong
,
H.
,
2017
, “
Exergy and Energy Analysis of Photovoltaic-Thermoelectric Hybrid Systems
,”
Energy
,
126
(
May
), pp.
343
351
. 10.1016/j.energy.2017.03.042
You do not currently have access to this content.