Abstract

A double multiple streamtube model coupled with variable pitch methodology is used to analyze the performance characteristics of a small-scale straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT). The numerical study revealed that a fixed pitch of −2.5 deg could greatly enhance the performance of the wind turbine. However, no improvement is observed in the starting torque capacity. Furthermore, the performance of upwind and downwind zones has been investigated, and it is found that the VAWT starting capacity is improved by increasing/decreasing the pitch angle upwind/downwind of the turbine. To optimize the performance, four cases of variable pitch angle schemes of sinusoidal nature were examined. The parameters of the sinusoidal functions were optimized using differential evolution (DE) algorithm with different cost functions. The results showed improvement in the power coefficient, yet with low starting capacity enhancement. Among the objective functions used in DE algorithm, the negative of the average power coefficient is found to lead to the best starting capacity with moderate peak power coefficient.

References

1.
Zhao
,
Z.
,
Qian
,
S.
,
Shen
,
W.
,
Wang
,
T.
,
Xu
,
B.
,
Zheng
,
Y.
, and
Wang
,
R.
,
2017
, “
Study on Variable Pitch Strategy in H-Type Wind Turbine Considering Effect of Small Angle of Attack
,”
J. Renewable Sustainable Energy
,
9
(
5
), p.
053302
. 10.1063/1.4989795
2.
Miau
,
J. J.
,
Liang
,
S. Y.
,
Yu
,
R. M.
,
Hu
,
C. C.
,
Leu
,
T. S.
,
Cheng
,
J. C.
, and
Chen
,
S. J.
,
2012
, “
Design and Test of a Vertical-Axis Wind Turbine With Pitch Control
,”
Appl. Mech. Mater.
,
225
(
AEROTECH IV
), pp.
338
343
. www.scientific.net/AMM.225.338
3.
Khalid
,
S. S.
,
Liang
,
Z.
,
Qi-hu
,
S.
, and
Xue-Wei
,
Z.
,
2013
, “
Difference Between Fixed and Variable Pitch Vertical Axis Tidal Turbine-Using CFD Analysis in CFX
,”
Res. J. Appl. Sci. Eng. Technol.
,
5
(
1
), pp.
319
325
.
4.
Schönborn
,
A.
, and
Chantzidakis
,
M.
,
2007
, “
Development of a Hydraulic Control Mechanism for Cyclic Pitch Marine Current Turbines
,”
Renewable Energy
,
32
(
4
), pp.
662
679
. 10.1016/j.renene.2006.02.004
5.
Pawsey
,
N. C. K.
,
2002
, “
Development and Evaluation of Passive Variable-Pitch Vertical Axis Wind Turbines
,” Ph.D. thesis,
Mechanical and Manufacturing Engineering, Faculty of Engineering, UNSW
,
Sydney
.
6.
Kirke
,
B. K.
,
1998
, “
Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications
,” Ph.D. thesis,
Griffith University
,
Gold Coast
.
7.
Douak
,
M.
,
Aouachria
,
Z.
,
Rabehi
,
R.
, and
Allam
,
N.
,
2018
, “
Wind Energy Systems: Analysis of the Self-Starting Physics of Vertical Axis Wind Turbine
,”
Renewable Sustainable Energy Rev.
,
81, Part 1
, pp.
1602
1610
. 10.1016/j.rser.2017.05.238
8.
Kirke
,
B.
, and
Lazauskas
,
L.
,
1991
, “
Enhancing the Performance of Vertical Axis Wind Turbine Using a Simple Variable Pitch System
,”
Wind Eng.
,
15
(
4
), pp.
187
195
.
9.
Lazauskas
,
L.
,
1992
, “
Three Pitch Control Systems for Vertical Axis Wind Turbines Compared
,”
Wind Eng.
,
16
(
5
), pp.
269
282
.
10.
Firdaus
,
R.
,
Kiwata
,
T.
,
Kono
,
T.
, and
Nagao
,
K.
,
2015
, “
Numerical and Experimental Studies of a Small Vertical-Axis Wind Turbine With Variable-Pitch Straight Blades
,”
J. Fluid Sci. Technol.
,
10
(
1
), pp.
JFST0001
JFST0001
. 10.1299/jfst.2015jfst0001
11.
Kiwata
,
T.
,
Yamada
,
T.
,
Kita
,
T.
,
Takata
,
S.
,
Komatsu
,
N.
, and
Kimura
,
S.
,
2010
, “
Performance of a Vertical Axis Wind Turbine With Variable-Pitch Straight Blades Utilizing a Linkage Mechanism
,”
J. Environ. Eng.
,
5
(
1
), pp.
213
225
. 10.1299/jee.5.213
12.
Chen
,
J.
,
Shen
,
X.
,
Zhu
,
X.
, and
Du
,
Z.
,
2019
, “
A Study on the Capability of Backward Swept Blades to Mitigate Loads of Wind Turbines in Shear Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
081201
. 10.1115/1.4042716
13.
Rathi
,
D.
,
2012
, “
Performance Prediction and Dynamic Model Analysis of Vertical Axis Wind Turbine Blades with Aerodynamically Varied Blade Pitch
,” MS Thesis,
North Carolina State University
,
Raleigh, NC
, pp.
1
112
.
14.
Ahmed
,
M. R.
, and
Nabolaniwaqa
,
E.
,
2019
, “
Performance Studies on a Wind Turbine Blade Section for Low Wind Speeds With a Gurney Flap
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111202
. 10.1115/1.4043708
15.
Mishraa
,
N.
,
Guptaa
,
A. S.
,
Dawara
,
J.
,
Kumara
,
A.
, and
Mitraa
,
S.
,
2018
, “
Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
121201
. https://doi.org/10.1115/1.4040506
16.
Abate
,
G.
,
Mavris
,
D. N.
, and
Sankar
,
L. N.
,
2019
, “
Performance Effects of Leading Edge Tubercles on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051206
. 10.1115/1.4042529
17.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M. L.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051205
. 10.1115/1.4042450
18.
Paraschivoiu
,
I.
,
Trifu
,
O.
, and
Saeed
,
F.
,
2009
, “
H-Darrieus Wind Turbine With Blade Pitch Control
,”
Int. J. Rotating Mach.
,
2009
, pp.
1
7
. 10.1155/2009/505343
19.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Murata
,
J.
,
Shimizu
,
K.
,
Ogasawara
,
T.
,
Nakai
,
A.
, and
Kasuya
,
T.
,
2016
, “
Effect of Solidity on Aerodynamic Forces Around Straight-Bladed Vertical Axis Wind Turbine by Wind Tunnel Experiments (Depending on Number of Blades)
,”
Renewable Energy
,
96, Part A
, pp.
928
939
. 10.1016/j.renene.2016.05.054
20.
Yang
,
Y.
,
Guo
,
Z.
,
Song
,
Q.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2018
, “
Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-Bladed Vertical Axis Wind Turbine Based on Experiments and Simulations
,”
Energies
,
11
(
6
), p.
1514
. 10.3390/en11061514
21.
Chougule
,
P.
,
Nielsen
,
S. R.
, and
Basu
,
B.
,
2013
, “Active Blade Pitch Control for Darrieus Straight Bladed Vertical Axis Wind Turbine of New Design,” 10 DAMAS 2013, Vol.
569–570
,
Trans Tech Publ.
,
Switzerland
, pp.
668
675
.
22.
Ferrari
,
G.
,
2012
,
Development of an Aeroelastic Simulation for the Analysis of Vertical Axis Wind Turbine
, Doctoral dissertation,
ResearchSpace@ Auckland
,
New Zealand
, pp.
1
264
.
23.
Paraschivoiu
,
I.
,
1981
, “
Double-Multiple Streamtube Model for Darrieus Wind Turbines
,”
Second DOE/NASA Wind Turbines Dynamics Workshop
,
Cleveland, OH
,
Feb.
, pp.
19
25
, Paper No. NASA CP-2186.
24.
Mohammed
,
A. A.
,
Ouakad
,
H. M.
,
Sahin
,
A. Z.
, and
Bahaidarah
,
H. M.
,
2019
, “
Vertical Axis Wind Turbine Aerodynamics: Summary and Review of Momentum Models
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
050801
. 10.1115/1.4042643
25.
Goude
,
A.
,
2012
, “
Fluid Mechanics of Vertical Axis Turbines: Simulations and Model Development
,”
Acta Universitatis Upsaliensis
,
Uppsala, Sweden
.
26.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design: with Emphasis on Darrieus Concept
,
Presses inter Polytechnique
,
Montréal, Canada
.
27.
Soraghan
,
C. E.
,
Leithead
,
W. E.
,
Feuchtwang
,
J.
, and
Yue
,
H.
,
2013
, “
Double Multiple Streamtube Model for Variable Pitch Vertical Axis Wind Turbines
,”
31st AIAA Applied Aerodynamics Conference
,
San Diego, CA
,
June 24–27
. https://doi.org/10.2514/6.2013-2802
28.
Sheldahl
,
R. E.
,
Klimas
,
P. C.
, and
Feltz
,
L. V.
,
1980
, “
Aerodynamic Performance of a 5-metre-diameter Darrieus Turbine with Extruded Aluminum NACA-0015 Blades
,”
Sandia Labs., Albuquerque, NM
, SAND-80-0179. https://www.osti.gov/biblio/5303846-aerodynamic-performance-metre-diameter-darrieus-turbine-extruded-aluminum-nacablades
29.
Worstell
,
M. H.
,
1979
, “
Aerodynamic Performance of the 17-Metre-Diameter Darrieus Wind Turbine
,”
Department of Energy, Sandia Laboratories
.
30.
Paraschivoiu
,
I.
, and
Delclaux
,
F.
,
1983
, “
Double Multiple Streamtube Model With Recent Improvements
,”
J. Energy
,
7
(
3
), pp.
250
255
. 10.2514/3.48077
31.
Mohammed
,
A. A.
,
Ouakad
,
H. M.
,
Sahin
,
A. Z.
, and
Bahaidarah
,
H. M.
,
2019
, “
Parametric Study and Comparison of Aerodynamics Momentum-Based Models for Straight-Bladed Vertical Axis Wind Turbines
,”
Arab. J. Sci. Eng.
, pp.
1
13
. 10.1007/s13369-019-04133-w
32.
Arunachalam
,
V.
,
2008
, “
Optimization Using Differential Evolution
,”
Department of Civil and Environmental Engineering, The University of Western Ontario
, Water Resources Research Report, 22.
33.
Carrigan
,
T. J.
,
Dennis
,
B. H.
,
Han
,
Z. X.
, and
Wang
,
B. P.
,
2012
, “
Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution
,”
ISRN Renewable Energy
,
2012
, pp.
1
16
. 10.5402/2012/528418
34.
Storn
,
R.
, and
Price
,
K.
,
1995
, “
Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
,”
International Computer Science Institute
,
Berkeley, CA
. Technical Report TR-95–012.
35.
Price
,
K. V.
,
1996
, “
Differential Evolution: A Fast and Simple Numerical Optimizer
,”
Proceedings of North American Fuzzy Information Processing
,
Berkeley, CA
,
June 19–22
, pp.
524
527
.
36.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
. 10.1023/A:1008202821328
37.
Bianchi
,
F. D.
,
Mantz
,
R. J.
, and
De Battista
,
H.
,
2007
,
The Wind and Wind Turbines
,
Springer
,
New York
.
38.
Das
,
S.
, and
Suganthan
,
P. N.
,
2010
, “
Differential Evolution: A Survey of the State-of-the-Art
,”
IEEE Trans. Evol. Comput.
,
15
(
1
), pp.
4
31
. 10.1109/TEVC.2010.2059031
39.
Taher
,
S. A.
, and
Afsari
,
S. A.
,
2012
, “
Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm
,”
Math. Probl. Eng.
,
2012
, pp.
1
20
. 10.1155/2012/838629
You do not currently have access to this content.