Abstract

The fluid–structure interaction (FSI) is generally addressed in multimegawatt wind turbine calculations. From the fluid flow perspective, the semi-analytical approaches, like actuator disk (AD) model, were commonly used in wind turbine rotor calculations. Indeed, the AD model can effectively reduce the computational cost of full-scale numerical methods. Additionally, it can substantially improve the results of pure analytical methods. Despite its great advantages, the AD model has not been developed to simulate the FSI problem in wind turbine simulations. This study first examines the effect of constant (rigid) cone angle on the performance of the chosen benchmark wind turbine. As a major contribution, this work subsequently extends the rigid AD model to nonrigid applications to suitably simulate the FSI. The new developed AD-FSI solver uses the finite-volume method to calculate the aerodynamic loads and the beam theory to predict the structural behaviors. A benchmark megawatt wind turbine is simulated to examine the accuracy of the newly developed AD-FSI solver. Next, the results of this solver are compared with the results of other researchers, who applied various analytical and numerical methods to obtain their results. The comparisons indicate that the new developed solver calculates the aerodynamic loads reliably and predicts the blade deflection very accurately.

References

References
1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
. 10.1115/1.4037757
2.
Spera
,
D. A.
,
1994
, “Introduction to Modern Wind Turbines,”
Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering
,
D. A.
Spera
, ed.,
ASME Press
,
New York
, pp.
47
72
.
3.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L. J.
,
2001
, “
NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/TP-500-29494.
4.
Keith
,
T.
, and
Jr.
,
1986
, “
A Simplified Free Wake Method for Horizontal-Axis Wind Turbine Performance Prediction
,”
ASME J. Fluids Eng.
,
108
(
4
), pp.
401
406
. 10.1115/1.3242595
5.
Rodriguez
,
S. N.
, and
Jaworski
,
J. W.
,
2017
, “
Toward Identifying Aeroelastic Mechanisms in Near-Wake Instabilities of Floating Offshore Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051203
. 10.1115/1.4035753
6.
Chen
,
J.
,
Shen
,
X.
,
Zhu
,
X.
, and
Du
,
Z.
,
2019
, “
A Study on the Capability of Backward Swept Blades to Mitigate Loads of Wind Turbines in Shear Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
081201
. 10.1115/1.4042716
7.
Hurley
,
O. F.
,
Chow
,
R.
,
Blaylock
,
M. L.
,
Cooperman
,
A. M.
, and
van Dam
,
C. P.
,
2019
, “
Blade Element Momentum Study of Rotor Aerodynamic Performance and Loading for Active and Passive Microjet Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051213
. 10.1115/1.4043326
8.
Sorensen
,
N.
, and
Michelsen
,
J.
,
2000
, “
Aerodynamic Predictions for the Unsteady Aerodynamics Experiment Phase-II Rotor at the National Renewable Energy Laboratory
,”
2000 ASME Wind Energy Symposium
,
Reno, NV
,
Jan. 10
, p.
37
.
9.
Sørensen
,
N. N.
,
2009
, “
CFD Modelling of Laminar-Turbulent Transition for Airfoils and Rotors Using the γ-Model
,”
Wind Energy
,
12
, pp.
715
733
. 10.1002/we.325
10.
Bazilevs
,
Y.
,
Hsu
,
M. C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
, and
Tezduyar
,
T. E.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
207
235
. 10.1002/fld.2400
11.
Boudreau
,
M.
, and
Dumas
,
G.
,
2017
, “
Comparison of the Wake Recovery of the Axial-Flow and Cross-Flow Turbine Concepts
,”
J. Wind Eng. Ind. Aerodyn.
,
165
, pp.
137
152
. 10.1016/j.jweia.2017.03.010
12.
Tabatabaei
,
N.
,
Cervantes
,
M. J.
, and
Gantasala
,
S.
,
2018
, “
Wind Turbine Aerodynamic Modelling in Icing Condition: 3D RANS-CFD vs BEM Method
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
071201
. 10.1115/1.4042713
13.
Uemura
,
Y.
,
Tanabe
,
Y.
,
Mamori
,
H.
,
Fukushima
,
N.
, and
Yamamoto
,
M.
,
2017
, “
Wake Deflection in Long Distance From a Yawed Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051212
. 10.1115/1.4036541
14.
Froude
,
R. E.
,
1889
, “
On the Part Played in Propulsion by Differences of Fluid Pressure
,”
Trans. Inst. Nav. Arch.
,
30
, p.
390
.
15.
Behrouzifar
,
A.
, and
Darbandi
,
M.
,
2019
, “
An Improved Actuator Disc Model for the Numerical Prediction of the Far-Wake Region of a Horizontal Axis Wind Turbine and Its Performance
,”
Energy Convers. Manage.
,
185
, pp.
482
495
. 10.1016/j.enconman.2019.02.005
16.
Sørensen
,
J.
,
Shen
,
W.
, and
Munduate
,
X.
,
1998
, “
Analysis of Wake States by a Full-Field Actuator Disc Model
,”
Wind Energy
,
1
(
2
), pp.
73
88
.
17.
Harrison
,
M.
,
Batten
,
W.
,
Myers
,
L. E.
, and
Bahaj
,
A. S.
,
2010
, “
Comparison Between CFD Simulations and Experiments for Predicting the Far Wake of Horizontal Axis Tidal Turbines
,”
IET Renew. Power Gener.
,
4
(
6
), pp.
613
627
. 10.1049/iet-rpg.2009.0193
18.
Diaz
,
G. P. N.
,
Saulo
,
A. C.
, and
Otero
,
A. D.
,
2019
, “
Wind Farm Interference and Terrain Interaction Simulation by Means of an Adaptive Actuator Disc
,”
J. Wind Eng. Ind. Aerodyn.
,
186
, pp.
58
67
. 10.1016/j.jweia.2018.12.018
19.
Makridis
,
A.
, and
Chick
,
J.
,
2013
, “
Validation of a CFD Model of Wind Turbine Wakes With Terrain Effects
,”
J. Wind Eng. Ind. Aerodyn.
,
123
, pp.
12
29
. 10.1016/j.jweia.2013.08.009
20.
Murali
,
A.
, and
Rajagopalan
,
R.
,
2017
, “
Numerical Simulation of Multiple Interacting Wind Turbines on a Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
162
, pp.
57
72
. 10.1016/j.jweia.2017.01.005
21.
AlSam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
Wind–Wave Interaction Effects on a Wind Farm Power Production
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051213
. 10.1115/1.4036542
22.
Keck
,
R.-E.
,
2012
, “
A Numerical Investigation of Nacelle Anemometry for a HAWT Using Actuator Disc and Line Models in CFX
,”
Renew. Energy
,
48
, pp.
72
84
. 10.1016/j.renene.2012.04.004
23.
Xudong
,
W.
,
Shen
,
W. Z.
,
Zhu
,
W. J.
,
Sørensen
,
J. N.
, and
Jin,
,
C.
,
2009
, “
Shape Optimization of Wind Turbine Blades
,”
Wind Energy
,
12
(
8
), pp.
781
803
. 10.1002/we.335
24.
Otero
,
A. D.
,
Ponta
,
F. L.
, and
Lago
,
L. I.
,
2012
,
Advances in Wind Power
,
R.
Carriveau
, ed.,
INTECH
,
Windsor
, pp.
123
149
.
25.
Lee
,
J.-W.
,
Lee
,
J.-S.
,
Han
,
J.-H.
, and
Shin
,
H.-K.
,
2012
, “
Aeroelastic Analysis of Wind Turbine Blades Based on Modified Strip Theory
,”
J. Wind Eng. Ind. Aerodyn.
,
110
, pp.
62
69
. 10.1016/j.jweia.2012.07.007
26.
Jeong
,
M.-S.
,
Kim
,
S.-W.
,
Lee
,
I.
, and
Yoo
,
S.-J.
,
2014
, “
Wake Impacts on Aerodynamic and Aeroelastic Behaviors of a Horizontal Axis Wind Turbine Blade for Sheared and Turbulent Flow Conditions
,”
J. Fluids Struct.
,
50
, pp.
66
78
. 10.1016/j.jfluidstructs.2014.06.016
27.
Wang
,
L.
,
Quant
,
R.
, and
Kolios
,
A.
,
2016
, “
Fluid Structure Interaction Modelling of Horizontal-Axis Wind Turbine Blades Based on CFD and FEA
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
11
25
. 10.1016/j.jweia.2016.09.006
28.
Bazilevs
,
Y.
,
Hsu
,
M. C.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid–Structure Interaction Modeling With Composite Blades
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
236
253
. 10.1002/fld.2454
29.
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid–Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
(
6
), pp.
1
13
. 10.1007/s00466-012-0772-0
30.
Carrión
,
M.
,
Steijl
,
R.
,
Woodgate
,
M.
,
Barakos
,
G. N.
,
Munduate
,
X.
, and
Gomez-Iradi
,
S.
,
2014
, “
Aeroelastic Analysis of Wind Turbines Using a Tightly Coupled CFD–CSD Method
,”
J. Fluids Struct.
,
50
, pp.
392
415
. 10.1016/j.jfluidstructs.2014.06.029
31.
Leble
,
V.
, and
Barakos
,
G.
,
2016
, “
Demonstration of a Coupled Floating Offshore Wind Turbine Analysis With High-Fidelity Methods
,”
J. Fluids Struct.
,
62
, pp.
272
293
. 10.1016/j.jfluidstructs.2016.02.001
32.
Sessarego
,
M.
,
Dixon
,
K.
,
Rival
,
D. E.
, and
Wood
,
D. H.
,
2015
, “
A Hybrid Multi-Objective Evolutionary Algorithm for Wind-Turbine Blade Optimization
,”
Eng. Optim.
,
47
, pp.
1043
1062
. 10.1080/0305215X.2014.941532
33.
Darbandi
,
M.
, and
Ghafourizadeh
,
M.
,
2015
, “
Solving Turbulent Diffusion Flame in Cylindrical Frame Applying an Improved Advective Kinetics Scheme
,”
Theor. Comput. Fluid Dyn.
,
29
(
5–6
), pp.
413
. 10.1007/s00162-015-0365-6
34.
Darbandi
,
M.
, and
Ghafourizadeh
,
M.
,
2014
, “
Extending a Hybrid Finite-Volume-Element Method to Solve Laminar Diffusive Flame. Numerical Heat Transfer
,”
Part B: Fundamentals
,
66
(
2
), pp.
181
210
. 10.1080/10407790.2014.894442
35.
Mazzaferro
,
G. M.
,
Ferro
,
S. P.
, and
Goldschmit
,
M. B.
,
2005
, “
An Algorithm for Rotating Axisymmetric Flows: Model, Validation and Industrial Applications
,”
Int. J. Numer. Methods Fluids
,
48
(
10
), pp.
1101
1121
. 10.1002/fld.962
36.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
. 10.1016/0045-7825(74)90029-2
37.
Stallard
,
T.
,
Feng
,
T.
, and
Stansby
,
P. K.
,
2015
, “
Experimental Study of the Mean Wake of a Tidal Stream Rotor in a Shallow Turbulent Flow
,”
J. Fluids Struct.
,
54
, pp.
235
246
. 10.1016/j.jfluidstructs.2014.10.017
38.
Hansen
,
M.
,
2008
,
Aerodynamics of Wind Turbines
, 2nd ed.,
Earthscan
,
London
.
39.
Bauchau
,
O.
, and
Hong
,
C.
,
1988
, “
Nonlinear Composite Beam Theory
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
156
163
. 10.1115/1.3173622
40.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1787
1806
. 10.1016/0017-9310(72)90054-3
41.
Darbandi
,
M.
, and
Hosseinizadeh
,
S. F.
,
2003
, “
General Pressure-Correction Strategy to Include Density Variation in Incompressible Algorithms
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
372
380
. 10.2514/2.6778
42.
Javadi
,
K.
,
Darbandi
,
M.
, and
Taeibi-Rahni
,
M.
,
2008
, “
Three-Dimensional Compressible–Incompressible Turbulent Flow Simulation Using a Pressure-Based Algorithm
,”
Comput. Fluids
,
37
, pp.
747
766
. 10.1016/j.compfluid.2007.09.004
43.
Ebrahimi-Kebria
,
H.
,
Darbandi
,
M.
, and
Hosseinizadeh
,
S. F.
,
2011
, “
Numerical Simulation of Low-Mach-Number Laminar Mixing and Reacting Flows Using a Dual-Purpose Pressure-Based Algorithm. Numerical Heat Transfer
,”
Part B: Fundamentals
,
59
(
6
), pp.
495
514
. 10.1080/10407790.2011.578018
44.
Darbandi
,
M.
,
Vakili
,
S.
, and
Schneider
,
G. E.
,
2008
, “
Efficient Multilevel Restriction–Prolongation Expressions for Hybrid Finite Volume Element Method
,”
Int. J. Comput. Fluid Dyn.
,
22
(
1–2
), pp.
29
38
. 10.1080/10618560701737203
45.
Vakili
,
S.
, and
Darbandi
,
M.
,
2009
, “
Recommendations on Enhancing the Efficiency of Algebraic Multigrid Preconditioned GMRES in Solving Coupled Fluid Flow Equations. Numerical Heat Transfer
,”
Part B: Fundamentals
,
55
(
3
), pp.
232
256
. 10.1080/10407790802628879
46.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory
,
Golden, CO
, Technical Report No. NREL/TP-500-38060.
47.
Sørensen
,
J. N.
, and
Myken
,
A.
,
1992
, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
, pp.
139
149
. 10.1016/0167-6105(92)90540-Q
48.
Sørensen
,
J. N.
, and
Kock
,
C. W.
,
1995
, “
A Model for Unsteady Rotor Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
58
, pp.
259
275
. 10.1016/0167-6105(95)00027-5
49.
Mikkelsen
,
R.
,
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2001
, “
Modelling and Analysis of the Flow Field Around a Coned Rotor
,”
Wind Energy
,
4
(
3
), pp.
121
135
. 10.1002/we.50
50.
Leclerc
,
C.
, and
Masson
,
C.
,
2005
, “
Wind Turbine Performance Predictions Using a Differential Actuator-Lifting Disk Model
,”
ASME J. Sol. Energy Eng.
,
127
(
2
), pp.
200
208
. 10.1115/1.1889466
51.
Dose
,
B.
,
Rahimi
,
H.
,
Herráez
,
I.
,
Stoevesandt
,
B.
, and
Peinke
,
J.
,
2018
, “
Fluid–Structure Coupled Computations of the NREL 5 MW Wind Turbine by Means of CFD
,”
Renew. Energy
,
129
(
Part A
), pp.
591
605
. 10.1016/j.renene.2018.05.064
You do not currently have access to this content.