Abstract

The Tesla turbine built originally in 1913 by Nikola Tesla is an impulse and passive turbine. These characteristics drew the attention for its potential application for space cycle thermoelectric conversion and the possibility to improve cycle efficiency. The performance of a 70-mm rotor Tesla turbine will be presented and discussed. The turbine used saturated steam as the working fluid for experiments. The pressure range considered was between 300 to 700 kPa.

References

References
1.
Guimarães
,
L. N. F.
,
Nascimento
,
J. A.
,
Borges
,
E. M.
,
Caldeira
,
A. D.
, and
Dias
,
A. F.
,
2007
,
ENU’s Activities in the Area of Advanced Nuclear Technology: Prediction of Resources Needed for the First Phase of the TERRA Project
, IEAv-ENU/012/2007,
São José dos Campos, SP, Brazil
.
2.
Waltar
,
A. E.
, and
Reynolds
,
A. B.
,
1981
,
Fast Breeder Reactors
,
Pergamon Press
,
New York
.
3.
Houts
,
M. G.
,
Borowski
,
S. K.
,
George
,
J. A.
,
Kim
,
T.
,
Emrich
,
W. J.
,
Hickman
,
R. R.
,
Broadway
,
J. W.
,
Gerrish
,
H. P.
, and
Adams
,
R. B.
,
2012
,
Nuclear Thermal Propulsion for Advanced Space Exploration
, NASA Marshall Space Flight Center, MSFC, AL 35812, NASA Glenn Research Center, Cleveland OH, 44135,
NASA Johnson Space Center
,
Houston, TX
.
4.
Bejan
,
A.
,
2006
,
Advanced Engineering Thermodynamics
, 1st ed.,
Wiley
,
Hoboken, NJ
.
5.
Tesla
,
N.
,
1913
, “
Turbine
,” U.S. Patent No. 1,061,206.
6.
Scientific American
,
1911
, “
The Tesla Steam Turbine
,”
Scientific American
, pp.
296
297
.
7.
Schlichting
,
H.
,
2000
,
Boundary Layer Theory
, 8th ed.,
McGraw-Hill Book
,
New York, NY
.
8.
Hattori
,
H.
,
Houra
,
T.
,
Kono
,
A.
, and
Yoshikawa
,
S.
,
2017
, “
Computational Fluid Dynamics Study for Improvement of Prediction of Various Thermally Stratified Turbulent Boundary Layers
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051209
. 10.1115/1.4036177
9.
Armstrong
,
H. J.
,
1952
, “
An Investigation of the Performance of a Modified Tesla Turbine
,” Master of Science Dissertation,
Georgia Institute of Technology
,
Atlanta, GA
.
10.
Wong
,
K.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Res. Technol.
,
137
(
4
), p.
041201
. 10.1115/1.4028138
11.
Beans
,
E. W.
,
1961
, “
Performance Characteristics of a Friction Disk Turbine
,” Doctoral dissertation,
Pennsylvania State University
,
State College, PA
.
12.
Breiter
,
M. C.
, and
Pohlhausen
,
K.
,
1962
, “
Laminar Flow Between Two Parallel Rotating Disks
,”
Aeronautical Research Laboratories, Wright-Patterson Air Force Base
,
OH
, Report No. ARL 62–318.
13.
Rice
,
W.
,
1965
, “
An Analytical and Experimental Investigation of Multiple-Disk Turbines
,”
ASME J. Eng. Power
,
87
(
1
), pp.
29
35
. 10.1115/1.3678134
14.
Boyd
,
K. E.
, and
Rice
,
W.
,
1968
, “
Laminar Inward Flow of an Incompressible Fluid Between Rotating Disks, With Full Peripheral Admission
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
229
237
. 10.1115/1.3601185
15.
North
,
R. C.
,
1969
, “
An Investigation of the Tesla Turbine
,” Thesis,
University of Maryland
,
College Park, MD
.
16.
Lawn
,
M. L.
, and
Rice
,
W.
,
1974
, “
Calculated Design Data for the Multiple-Disk Turbine Using Incompressible Fluid
,”
ASME J. Fluids Eng.
,
96
(
3
), pp.
252
258
. 10.1115/1.3447148
17.
Barbarelli
,
S.
,
Florio
,
G.
, and
Scornaienchi
,
N.
,
2005
, “
Performance Analysis of a Low-Power Tangential Flow Turbine With Rotary Channel
,”
ASME J. Energy Res. Technol.
,
127
(
4
), pp.
272
279
. 10.1115/1.1944008
18.
Pandey
,
R. J.
,
Pudasaini
,
S.
,
Dhakal
,
S.
,
Uprety
,
R. B.
, and
Neopane
,
H. P.
,
2014
, “
Design and Computational Analysis of 1 kW Tesla Turbine
,”
Int. J. Sci. Res. Publ.
,
4
(
11
), pp.
1
5
.
19.
Alrabie
,
M. S.
,
Altamimi
,
F. N.
,
Altarrgemy
,
M. H.
,
Hadi
,
F.
,
Akbar
,
M. K.
, and
Traum
,
M. J.
,
2017
, “
Method to Design a Hydro Tesla Turbine for Sensitivity to Varying Laminar Reynolds Number Modulated by Changing Working Fluid Viscosity
,”
Energy Sustainability, ASME 2017 11th International Conference on Energy Sustainability
, Paper No. ES2017-3442.
20.
Carey
,
V. P.
,
2010
, “
Assessment of Tesla Turbine Performance for Small Scale Rankine Combined Heat and Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122301
. 10.1115/1.4001356
21.
Traum
,
M. J.
,
Hadi
,
F.
, and
Akbar
,
M. K.
,
2018
, “
Extending ‘Assessment of Tesla Turbine Performance’ Model for Sensitivity-Focused Experimental Design
,”
ASME J. Energy Res. Technol.
,
140
(
3
), p.
032005
. 10.1115/1.4037967
22.
De Souza
,
L. G. A.
,
Dos Santos
,
D. A.
,
Mariano
,
L. G.
,
Paceli
,
R.
,
De Oliveira
,
R. R.
,
Parêncio
,
L.
,
Placco
,
G. M.
, and
M
,
G.
,
2017
,
Study of Roughness in a Tesla Turbine
,
International Congress of Mechanical Engineering
,
Curitiba, PR, Brazil
.
23.
Ciappi
,
L.
,
Fiaschi
,
D.
,
Niknam
,
P. H.
, and
Talluri
,
L.
,
2019
, “
Computational Investigation of the Flow Inside a Tesla Turbine Rotor
,”
Energy
,
173
(
Apr.
), pp.
207
217
. 10.1016/j.energy.2019.01.158
24.
Talluri
,
L.
,
Fiaschi
,
D.
,
Neri
,
G.
, and
Ciappi
,
L.
,
2018
, “
Design and Optimization of a Tesla Turbine for ORC Applications
,”
Appl. Energy
,
226
(
Sept.
), pp.
300
319
. 10.1016/j.apenergy.2018.05.057
25.
Ji
,
F.
,
Bao
,
Y.
,
Zhou
,
Y.
,
Du
,
F.
,
Zhu
,
H.
,
Zhao
,
S.
,
Li
,
G.
,
Zhu
,
X.
, and
Ding
,
S.
,
2019
, “
Investigation on Performance and Implementation of Tesla Turbine in Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
179
(
Jan.
), pp.
326
338
. 10.1016/j.enconman.2018.10.071
26.
Placco
,
G. M.
,
Guimarães
,
L. N. F.
,
Camillo
,
G. P.
, and
Barrios Junior
,
A.
,
2011
, “
Design Construction and Analysis of a Tesla Turbine
,”
International Nuclear Atlantic Conference—INAC, R06-1 Nuclear Reactors for Space Applications.
,
Belo Horizonte - MG/Brazil
,
Nov
.
27.
Vidhi
,
R.
,
Kuravi
,
S.
,
Yogi
,
G. D. D.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Res. Technol.
,
135
(
4
), p.
042002
. 10.1115/1.4023513
28.
Surhone
,
L. M.
, and
Timpledon
,
M. T.
,
2010
,
Rankine Cycle
, 1st ed.,
Betascript Pub
,
New York
.
29.
Piotr
,
L.
, and
Marian
,
P.
,
2009
, “
Design Analysis of Tesla Micro-Turbine Operating on a Low-Boiling Medium
,”
Polish Maritime Res.
,
10012
, pp.
26
33
. 10.2478/v10012-008-0041-5
30.
Potter
,
M. C.
, and
Scott
,
E. P.
,
2003
,
Thermal Sciences: An Introduction to Thermodynamics, Fluid Mechanics, and Heat Transfer
,
Cengage Learning
,
New York
.
31.
Bathie
,
W. W.
,
1996
,
Fundamentals of Gas Turbine
, 2nd ed.,
Wiley
,
New York
.
32.
Tahil
,
W.
,
1998
,
Theoretical Analysis of a Disk Turbine
,
Tesla Engine Builder’s Association (TEBA) News
,
Milwaukee, WI
.
33.
Tahil
,
W.
,
1999
,
Theoretical Analysis of a Disk Turbine (2)
,
Tesla Engine Builder’s Assoc. (TEBA) News
,
Milwaukee, WI
.
34.
Placco
,
G. M.
,
2014
, “
Caracterização de uma Turbina de Tesla Operando em uma Micro Planta Térmica Rankine
,” M.Sc. thesis,
Aeronautics Institute of Technology
,
São José dos Campos, SP, Brazil
.
35.
National Instruments
,
2018
, “
LabVIEW NXG 2.1/2018
,” Documentation.
36.
Emran
,
T. A.
,
Alexander
,
R. C.
,
Stallings
,
C. T.
,
DeMay
,
M. A.
, and
Traum
,
M. J.
,
2010
, “
Method to Accurately Estimate Tesla Turbine Stall Torque for Dynamometer or Generator Load Selection
,”
ASME Early Career Technical Conference (ECTC)
,
Atlanta, GA
,
Oct. 1–2
.
37.
Emran
,
T. A.
,
2011
, “
Tesla Turbine Torque Modeling for Construction of a Dynamometer and Turbine
,” Master’s thesis,
University of North Texas
,
Denton, TX
.
38.
Sieverding
,
C. H.
, and
Brouckaert
,
J. F.
,
2004
,
Advanced Measurement Techniques for Aero Engines and Stationary gas Turbines
,
VKI
,
Rhode-Saint-Genèse, Belgium
.
39.
National Institute of Standards and Technology (NIST)
,
Chemestry WebBook
, http://webbook.nist.gov/chemistry/http://webbook.nist.gov/chemistry/, Accessed June 16,
2018
.
You do not currently have access to this content.