Abstract

In pursuit of energy harvesting from ocean waves, our recent progress on studying wave interaction with a lift-type rotor is discussed in this paper. The particular focus is on the characterization of the rotor's unidirectional responsiveness in waves. The rotor consists of six hydrofoil blades in two sets. One blade set has three blades laid out as a vertical-axis wind turbine of the Darrieus type. The other blade set has three blades configured like a Wells turbine. In combination, the formed rotor can be driven by flows in any direction to perform a unidirectional rotation about its vertically mounted shaft. This unidirectional responsiveness of the rotor also holds in waves, making the rotor an effective device for wave energy conversion. For the parametric study of the rotor, hydrofoil blades using different cross-sectional profiles and chord lengths have been employed to configure the rotor. The rotor was then tested in a wave flume under various wave conditions in a freewheeling mode. Experimental results were analyzed and discussed. The yielded research findings will greatly enhance the fundamental understanding of the rotor performance in waves and effectively guide the prototype rotor development for practical applications.

References

References
1.
Melikoglu
,
M.
,
2018
, “
Current Status and Future of Ocean Energy Sources: A Global Review
,”
Ocean Eng.
,
148
(
Jan.
), pp.
563
573
. 10.1016/j.oceaneng.2017.11.045
2.
Ozkop
,
E.
, and
Altas
,
I. H.
,
2017
, “
Control, Power and Electrical Components in Wave Energy Conversion Systems: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
67
(
Jan.
), pp.
106
115
. 10.1016/j.rser.2016.09.012
3.
Mustafa
,
S.
, and
Shapawi
,
R.
,
2015
,
Aquaculture Ecosystems: Adaptability and Sustainability
,
1st ed.
,
Wiley-Blackwell
,
Hoboken, NJ
.
4.
Manasseh
,
R.
,
Sannasiraj
,
S. A.
,
McInnes
,
K. L.
,
Sundar
,
V.
, and
Jalihal
,
P.
,
2017
, “
Integration of Wave Energy and Other Marine Renewable Energy Sources With the Needs of Coastal Societies
,”
Int. J. Ocean Clim. Syst.
,
8
(
Jan.
), pp.
19
36
. 10.1177/1759313116683962
5.
Czech
,
B.
, and
Bauer
,
P.
,
2012
, “
Wave Energy Converter Concepts: Design Challenges and Classification
,”
IEEE Ind. Electron. Mag.
,
6
(
2
), pp.
4
16
. 10.1109/MIE.2012.2193290
6.
Guney
,
M. S.
, and
Kaygusuz
,
K.
,
2010
, “
Hydrokinetic Energy Conversion System: A Technology Status Review
,”
Renew. Sust. Energ. Rev.
,
14
(
9
), pp.
2996
3004
. 10.1016/j.rser.2010.06.016
7.
Pickard
,
G. L.
, and
Pond
,
S.
,
1983
,
Introductory Dynamical Oceanography
,
2nd ed
.,
Butterworth-Heinemann
,
Oxford, UK
.
8.
Phillips
,
O. M.
,
1977
,
The Dynamics of the Upper Ocean
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
9.
Falcao
,
A. F. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renew. Sust. Energ. Rev.
,
14
(
3
), pp.
899
918
. 10.1016/j.rser.2009.11.003
10.
Yang
,
Y.
,
2014
, “
Unidirectional Rotary Tendency of a Wave-Driven Rotor
,”
J. Energy Power Eng.
,
8
(
9
), pp.
1607
1619
.
11.
Guo
,
B.
,
Patton
,
R.
,
Jin
,
S.
,
Gilbert
,
J.
, and
Parsons
,
D.
,
2018
, “
Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion
,”
IEEE Trans. Sust. Energ.
,
9
(
1
), pp.
453
461
. 10.1109/TSTE.2017.2741341
12.
Piscopo
,
V.
,
Benassai
,
G.
,
Cozzolino
,
L.
,
Della Morte
,
R.
, and
Scamardella
,
A.
,
2016
, “
A New Optimization Procedure of Heaving Point Absorber Hydrodynamic Performances
,”
Ocean Eng.
,
116
(
1
), pp.
242
259
. 10.1016/j.oceaneng.2016.03.004
13.
Shi
,
H.
,
Cao
,
F.
,
Liu
,
Z.
, and
Qu
,
N.
,
2016
, “
Theoretical Study on the Power Take-off Estimation of Heaving Buoy Wave Energy Converter
,”
Renewable Energy
,
86
(
Sept.
), pp.
441
448
. 10.1016/j.renene.2015.08.027
14.
Zou
,
S.
,
Abdelkhalik
,
O.
,
Robinett
,
R.
,
Korde
,
U.
,
Bacelli
,
G.
,
Wilson
,
D.
, and
Coe
,
R.
,
2017
, “
Model Predictive Control of Parametric Excited Pitch-Surge Modes in Wave Energy Converters
,”
Int. J. Mar. Energy
,
19
(
Sept.
), pp.
32
46
. 10.1016/j.ijome.2017.05.002
15.
Yerrapragada
,
K.
,
Ansari
,
M. H.
, and
Karami
,
M. A.
,
2017
, “
Enhancing Power Generation of Floating Wave Power Generators by Utilization of Nonlinear Roll-Pitch Coupling
,”
Smart Mater. Struct.
,
26
(
9
), p.
094003
. 10.1088/1361-665X/aa7710
16.
Henderson
,
R.
,
2006
, “
Design, Simulation, and Testing of a Novel Hydraulic Power Take-Off System for the Pelamis Wave Energy Converter
,”
Renew. Energ.
,
31
(
2
), pp.
271
283
. 10.1016/j.renene.2005.08.021
17.
Yu
,
H.
,
Zhang
,
Y.
, and
Zheng
,
S.
,
2016
, “
Numerical Study on the Performance of a Wave Energy Converter With Three Hinged Bodies
,”
Renew. Energ.
,
99
(
Dec.
), pp.
1276
1286
. 10.1016/j.renene.2016.08.023
18.
Falcao
,
A. F. O.
, and
Henriques
,
J. C. C.
,
2016
, “
Oscillating-Water-Column Wave Energy Converters and Air Turbines: A Review
,”
Renew. Energ.
,
85
(
Jan.
), pp.
1391
1424
. 10.1016/j.renene.2015.07.086
19.
López
,
I.
,
Andreu
,
J.
,
Ceballos
,
S.
,
de Alegría
,
I. M.
, and
Kortabarria
,
I.
,
2013
, “
Review of Wave Energy Technologies and the Necessary Power-Equipment
,”
Renew. Sust. Energ. Rev.
,
27
(
Nov.
), pp.
413
434
. 10.1016/j.rser.2013.07.009
20.
Akimoto
,
H.
,
Tanaka
,
K.
, and
Kim
,
Y. Y.
,
2015
, “
Drag-type Cross Flow Water Turbine for Capturing Energy From the Orbital Fluid Motion in Ocean Wave
,”
Renew. Energ.
,
76
(
Apr.
), pp.
196
203
. 10.1016/j.renene.2014.11.016
21.
Ahmed
,
M. R.
,
Faizal
,
M.
, and
Lee
,
Y. H.
,
2013
, “
Optimization of Blade Curvature and Inter-Rotor Spacing of Savonius Rotors for Maximum Wave Energy Extraction
,”
Ocean Eng.
,
65
(
June
), pp.
32
38
. 10.1016/j.oceaneng.2013.02.005
22.
Siegel
,
S. G.
,
Fagley
,
C.
, and
Nowlin
,
S.
,
2012
, “
Experimental Wave Termination in a 2D Wave Tunnel Using a Cycloidal Wave Energy Converter
,”
Appl. Ocean Res.
,
38
(
Oct.
), pp.
92
99
. 10.1016/j.apor.2012.07.003
23.
Yang
,
Y.
,
Diaz
,
I.
, and
Morales
,
M.
,
2018
, “
A Vertical-Axis Unidirectional Rotor for Wave Energy Conversion
,”
Ocean Eng.
,
160
(
July
), pp.
224
230
. 10.1016/j.oceaneng.2018.04.067
24.
Rossen
,
E. A.
,
Scheijgrond
,
P. C.
, and
Mikkelsen
,
R.
,
2000
, “
Development and Model Test of a Combined Wells-Darrieus Wave Rotor
,”
Proceedings of the Fourth European Wave Energy Conference
,
Aalborg University
,
Aalborg, Denmark
,
Dec. 4–6
.
25.
Chen
,
Z.
,
Zhou
,
B.
,
Zhang
,
L.
,
Sun
,
L.
, and
Zhang
,
X.
,
2018
, “
Performance Evaluation of a Dual Resonance Wave-Energy Convertor in Irregular Waves
,”
Appl. Ocean Res.
,
77
(
Aug.
), pp.
78
88
. 10.1016/j.apor.2018.04.014
26.
Guo
,
B.
,
Patton
,
R. J.
,
Jin
,
S.
, and
Lan
,
J.
,
2018
, “
Numerical and Experimental Studies of Excitation Force Approximation for Wave Energy Conversion
,”
Renew. Energ.
,
125
(
Sept.
), pp.
877
889
. 10.1016/j.renene.2018.03.007
27.
Pierson
,
W.
, and
Moskowits
,
L.
,
1964
, “
A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii
,”
J. Geophys. Res.
,
69
(
24
), pp.
5181
5190
. 10.1029/JZ069i024p05181
28.
Astariz
,
S.
, and
Iglesias
,
G.
,
2015
, “
The Economics of Wave Energy: A Review
,”
Renew. Sust. Energ. Rev.
,
45
(
May
), pp.
397
408
. 10.1016/j.rser.2015.01.061
29.
Mohamed
,
M. H.
,
2012
, “
Performance Investigation of H-Rotor Darrieus Turbine With New Airfoil Shapes
,”
Energy
,
47
(
1
), pp.
522
530
. 10.1016/j.energy.2012.08.044
30.
Shehata
,
A. S.
,
Xiao
,
Q.
,
Saqr
,
K. M.
, and
Alexander
,
D.
,
2017
, “
Wells Turbine for Wave Energy Conversion: A Review
,”
Energy Res.
,
41
(
1
), pp.
6
38
. 10.1002/er.3583
31.
Zheng
,
S.
,
Zhang
,
Y.
, and
Sheng
,
W.
,
2016
, “
Maximum Wave Energy Conversion by Two Interconnected Floaters
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032004
. 10.1115/1.4032793
32.
Pastor
,
J.
, and
Liu
,
Y.
,
2014
, “
Power Absorption Modeling and Optimization of a Point Absorbing Wave Energy Converter Using Numerical Method
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021207
. 10.1115/1.4027409
33.
Sheng
,
W.
, and
Lewis
,
A.
,
2012
, “
Assessment of Wave Energy Extraction From Seas: Numerical Validation
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041701
. 10.1115/1.4007193
34.
Yang
,
Y.
,
Salazar
,
F.
, and
Soto
,
J.
,
2017
, “
A Vertical Axis Rotor for Wave Energy Conversion
,”
Proceedings of ASME 2017 Fluids Engineering Summer Conference
,
Waikoloa, Hawaii
,
July 30–Aug. 3
.
You do not currently have access to this content.