Abstract

During the combustion of solid fuels, the undesired effects of ash transformation include bed agglomeration, slagging, and fouling processes. In particular, a problematic consequence of bed agglomeration is the defluidization process, resulting from the disappearance of gaseous bubbles that are created behind air distributors. Different solutions can be applied against the agglomeration process. One possible method is to apply some additives that influence the ash behavior, thus inhibiting the agglomeration process. This paper presents the results of investigations into ash-related issues in a laboratory-scale bubbling fluidized bed (BFB) reactor. In particular, the impact of additives (kaolin, halloysite, fly ash, and the residuals from wet desulfurization system (IMOS)) on bed agglomeration was investigated. It was found that the addition of these compounds increased the defluidization time from ∼109 min (without additive) to ∼285 min in the BFB (with the addition of 0.1 g/min of kaolin). The morphology of additive (kaolin and halloysite) transformation after their addition into the combustion chamber was discussed. Another interesting phenomenon is that residuals from the IMOS exhibited the ability to be an additive against the agglomeration process. The defluidization time can be also significantly increased by the simultaneous application of the additive and the control of fluidization air velocity. The procedure of periodical bed moving by impulse primary air feeding against defluidization (PADM) is suggested and discussed. The PADM procedure resulted in a 36% reduction of additive, thus reducing the cost of measures against ash-related issues.

References

References
1.
Xie
,
G.
,
Gupta
,
A. K.
,
Zhang
,
Y.
,
Manca
,
O.
, and
Zhang
,
H.
,
2018
, “
Special Issue on Recent Advances in Fundamentals and Applications of Biomass Energy
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040301
. 10.1115/1.4039892
2.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
. 10.1115/1.4036958
3.
Niu
,
Y.
,
Tan
,
H.
, and
Hui
,
S.
,
2016
, “
Ash-Related Issues During Biomass Combustion: Alkali-Induced Slagging, Silicate Melt-Induced Slagging (Ash Fusion), Agglomeration, Corrosion, Ash Utilization, and Related Countermeasures
,”
Prog. Energy Combust. Sci.
,
52
(
Feb.
), pp.
1
61
. 10.1016/j.pecs.2015.09.003
4.
Madejski
,
P.
,
Janda
,
T.
,
Taler
,
J.
,
Nabagło
,
D.
,
Węzik
,
R.
, and
Mazur
,
M.
,
2017
, “
Analysis of Fouling Degree of Individual Heating Surfaces in a Pulverized Coal Fired Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032003
. 10.1115/1.4037936
5.
Morris
,
J. D.
,
Daood
,
S. S.
,
Chilton
,
S.
, and
Nimmo
,
W.
,
2018
, “
Mechanisms and Mitigation of Agglomeration During Fluidized Bed Combustion of Biomass: A Review
,”
Fuel
,
230
(
Oct.
), pp.
452
473
. 10.1016/j.fuel.2018.04.098
6.
Chirone
,
R.
,
Miccio
,
F.
, and
Scala
,
F.
,
2006
, “
Mechanism and Prediction of Bed Agglomeration During Fluidized Bed Combustion of a Biomass Fuel: Effect of the Reactor Scale
,”
Chem. Eng. J.
,
123
(
3
), pp.
71
80
. 10.1016/j.cej.2006.07.004
7.
Lin
,
C.-L.
, and
Wey
,
M.-Y.
,
2004
, “
The Effect of Mineral Compositions of Waste and Operating Conditions on Particle Agglomeration/Defluidization During Incineration
,”
Fuel
,
83
(
17–18
), pp.
2335
2343
. 10.1016/j.fuel.2004.06.030
8.
Pettersson
,
A.
,
Niklasson
,
F.
, and
Moradian
,
F.
,
2013
, “
Reduced Bed Temperature in a Commercial Waste to Energy Boiler—Impact on Ash and Deposit Formation
,”
Fuel Process. Technol.
,
105
(
Jan.
), pp.
28
36
. 10.1016/j.fuproc.2011.09.001
9.
Liu
,
H.
,
Feng
,
Y.
,
Wu
,
S.
, and
Liu
,
D.
,
2009
, “
The Role of Ash Particles in the Bed Agglomeration During the Fluidized Bed Combustion of Rice Straw
,”
Bioresour. Technol.
,
100
(
24
), pp.
6505
6513
. 10.1016/j.biortech.2009.06.098
10.
Davidsson
,
K. O.
,
Korsgren
,
J. G.
,
Pettersson
,
J. B. C.
, and
Jäglid
,
U.
,
2002
, “
The Effects of Fuel Washing Techniques on Alkali Release From Biomass
,”
Fuel
,
81
(
2
), pp.
137
142
. 10.1016/S0016-2361(01)00132-6
11.
Arvelakis
,
S.
,
Vourliotis
,
P.
,
Kakaras
,
E.
, and
Koukios
,
E. G.
,
2001
, “
Effect of Leaching on the Ash Behavior of Wheat Straw and Olive Residue During Fluidized Bed Combustion
,”
Biomass Bioenergy
,
20
(
6
), pp.
459
470
. 10.1016/S0961-9534(01)00003-4
12.
Bakker
,
R. R.
,
Jenkins
,
B. M.
, and
Williams
,
R. B.
,
2002
, “
Fluidized Bed Combustion of Leached Rice Straw
,”
Energy Fuels
,
16
(
2
), pp.
356
365
. 10.1021/ef010197w
13.
Liu
,
H.
,
Zhang
,
L.
,
Han
,
Z.
,
Xie
,
B.
, and
Wu
,
S.
,
2013
, “
The Effects of Leaching Methods on the Combustion Characteristics of Rice Straw
,”
Biomass Bioenergy
,
49
(
Feb.
), pp.
22
27
. 10.1016/j.biombioe.2012.12.024
14.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of Lignocellulosic Biomass
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082203
. 10.1115/1.4042719
15.
Zhang
,
C.
,
Ho
,
S.-H.
,
Chen
,
W.-H.
,
Xie
,
Y.
,
Liu
,
Z.
, and
Chang
,
J.-S.
,
2018
, “
Torrefaction Performance and Energy Usage of Biomass Wastes and Their Correlations With Torrefaction Severity Index
,”
Appl. Energy
,
220
(
June
), pp.
598
604
. 10.1016/j.apenergy.2018.03.129
16.
Akinyemi
,
O. S.
,
Jiang
,
L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
. 10.1115/1.4040202
17.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2017
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
. 10.1115/1.4038406
18.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
19.
Chen
,
H.
,
Chen
,
X.
,
Qiao
,
Z.
, and
Liu
,
H.
,
2016
, “
Release and Transformation Characteristics of K and Cl During Straw Torrefaction and Mild Pyrolysis
,”
Fuel
,
167
(
Mar.
), pp.
31
39
. 10.1016/j.fuel.2015.11.059
20.
Khazraie Shoulaifar
,
T.
,
DeMartini
,
N.
,
Karlström
,
O.
, and
Hupa
,
M.
,
2016
, “
Impact of Organically Bonded Potassium on Torrefaction: Part 1. Experimental
,”
Fuel
,
165
(
Feb.
), pp.
544
552
. 10.1016/j.fuel.2015.06.024
21.
Keipi
,
T.
,
Tolvanen
,
H.
,
Kokko
,
L.
, and
Raiko
,
R.
,
2014
, “
The Effect of Torrefaction on the Chlorine Content and Heating Value of Eight Woody Biomass Samples
,”
Biomass Bioenergy
,
66
(
July
), pp.
232
239
. 10.1016/j.biombioe.2014.02.015
22.
Khazraie Shoulaifar
,
T.
,
DeMartini
,
N.
,
Karlström
,
O.
,
Hemming
,
J.
, and
Hupa
,
M.
,
2016
, “
Impact of Organically Bonded Potassium on Torrefaction: Part 2. Modeling
,”
Fuel
,
168
(
Mar.
), pp.
107
115
. 10.1016/j.fuel.2015.11.084
23.
Lin
,
C.-L.
,
Peng
,
T.-H.
, and
Wang
,
W.-J.
,
2011
, “
Effect of Particle Size Distribution on Agglomeration/Defluidization During Fluidized Bed Combustion
,”
Powder Technol.
,
207
(
1–3
), pp.
290
295
. 10.1016/j.powtec.2010.11.010
24.
Bartels
,
M.
,
Lin
,
W.
,
Nijenhuis
,
J.
,
Kapteijn
,
F.
, and
van Ommen
,
J. R.
,
2008
, “
Agglomeration in Fluidized Beds at High Temperatures: Mechanisms, Detection and Prevention
,”
Prog. Energy Combust. Sci.
,
34
(
5
), pp.
633
666
. 10.1016/j.pecs.2008.04.002
25.
Ergudenler
,
A.
, and
Ghaly
,
A. E.
,
1993
, “
Agglomeration of Silica Sand in a Fluidized Bed Gasifier Operating on Wheat Straw
,”
Biomass Bioenergy
,
4
(
2
), pp.
135
147
. 10.1016/0961-9534(93)90034-2
26.
Wang
,
X. S.
, and
Rhodes
,
M. J.
,
2005
, “
Using Pulsed Flow to Overcome Defluidization
,”
Chem. Eng. Sci.
,
60
(
18
), pp.
5177
5181
. 10.1016/j.ces.2005.04.016
27.
Silvennoinen
,
J.
, and
Hedman
,
M.
,
2013
, “
Co-Firing of Agricultural Fuels in a Full-Scale Fluidized Bed Boiler
,”
Fuel Process. Technol.
,
105
(
Jan.
), pp.
11
19
. 10.1016/j.fuproc.2011.05.019
28.
Kalisz
,
S.
,
Ciukaj
,
S.
,
Mroczek
,
K.
,
Tymoszuk
,
M.
,
Wejkowski
,
R.
,
Pronobis
,
M.
, and
Kubiczek
,
H.
,
2015
, “
Full-Scale Study on Halloysite Fireside Additive in 230 t/h Pulverized Coal Utility Boiler
,”
Energy
,
92
(
Part 1
), pp.
33
39
. 10.1016/j.energy.2015.03.062
29.
Selvakumaran
,
P.
,
Lawerence
,
A.
, and
Bakthavatsalam
,
A. K.
,
2014
, “
Effect of Additives on Sintering of Lignites During CFB Combustion
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
480
488
. 10.1016/j.applthermaleng.2014.03.031
30.
Vamvuka
,
D.
,
Pitharoulis
,
M.
,
Alevizos
,
G.
,
Repouskou
,
E.
, and
Pentari
,
D.
,
2009
, “
Ash Effects During Combustion of Lignite/Biomass Blends in Fluidized bed
,”
Renewable Energy
,
34
(
12
), pp.
2662
2671
. 10.1016/j.renene.2009.05.005
31.
Piotrowska
,
P.
,
Rebbling
,
A.
,
Lindberg
,
D.
,
Backman
,
R.
,
Öhman
,
M.
, and
Boström
,
D.
,
2015
, “
Waste Gypsum Board and Ash-Related Problems During Combustion of Biomass. 1. Fluidized Bed
,”
Energy Fuels
,
29
(
2
), pp.
877
893
. 10.1021/ef5024753
32.
Rebbling
,
A.
,
Näzelius
,
I.-L.
,
Piotrowska
,
P.
,
Skoglund
,
N.
,
Boman
,
C.
,
Boström
,
D.
, and
Öhman
,
M.
,
2016
, “
Waste Gypsum Board and Ash-Related Problems During Combustion of Biomass. 2. Fixed Bed
,”
Energy Fuels
,
30
(
12
), pp.
10705
10713
. 10.1021/acs.energyfuels.6b01521
33.
Wang
,
G.
,
Jensen
,
P. A.
,
Wu
,
H.
,
Frandsen
,
F. J.
,
Sander
,
B.
, and
Glarborg
,
P.
,
2018
, “
Potassium Capture by Kaolin, Part 1: KOH
,”
Energy Fuels
,
32
(
2
), pp.
1851
1862
. 10.1021/acs.energyfuels.7b03645
34.
Wang
,
G.
,
Jensen
,
P. A.
,
Wu
,
H.
,
Frandsen
,
F. J.
,
Sander
,
B.
, and
Glarborg
,
P.
,
2018
, “
Potassium Capture by Kaolin, Part 2: K2CO3, KCl, and K2SO4
,”
Energy Fuels
,
32
(
3
), pp.
3566
3578
. 10.1021/acs.energyfuels.7b04055
35.
Vuthaluru
,
H. B.
,
1999
, “
Remediation of Ash Problems in Pulverised Coal-Fired Boilers
,”
Fuel
,
78
(
15
), pp.
1789
1803
. 10.1016/S0016-2361(99)00092-7
36.
Mroczek
,
K.
,
Kalisz
,
S.
,
Pronobis
,
M.
, and
Sołtys
,
J.
,
2011
, “
The Effect of Halloysite Additive on Operation of Boilers Firing Agricultural Biomass
,”
Fuel Process. Technol.
,
92
(
5
), pp.
845
855
. 10.1016/j.fuproc.2010.11.020
37.
De Fusco
,
L.
,
Defoort
,
F.
,
Rajczyk
,
R.
,
Jeanmart
,
H.
,
Blondeau
,
J.
, and
Contino
,
F.
,
2016
, “
Ash Characterization of Four Residual Wood Fuels in a 100 kWth Circulating Fluidized Bed Reactor Including the Use of Kaolin and Halloysite Additives
,”
Energy Fuels
,
30
(
10
), pp.
8304
8315
. 10.1021/acs.energyfuels.6b01784
38.
Lasek
,
J. A.
,
Janusz
,
M.
,
Zuwała
,
J.
,
Głód
,
K.
, and
Iluk
,
A.
,
2013
, “
Oxy-Fuel Combustion of Selected Solid Fuels Under Atmospheric and Elevated Pressures
,”
Energy
,
62
(
Dec.
), pp.
105
112
. 10.1016/j.energy.2013.04.079
39.
Lasek
,
J. A.
,
Głód
,
K.
,
Janusz
,
M.
,
Kazalski
,
K.
, and
Zuwała
,
J.
,
2012
, “
Pressurized Oxy-Fuel Combustion: A Study of Selected Parameters
,”
Energy Fuels
,
26
(
11
), pp.
6492
6500
. 10.1021/ef201677f
40.
Kopczyński
,
M.
,
Lasek
,
J. A.
,
Iluk
,
A.
, and
Zuwała
,
J.
,
2017
, “
The Co-Combustion of Hard Coal With Raw and Torrefied Biomasses (Willow (Salix Viminalis), Olive Oil Residue and Waste Wood From Furniture Manufacturing)
,”
Energy
,
140
(
Dec.
), pp.
1316
1325
. 10.1016/j.energy.2017.04.036
41.
Lasek
,
J. A.
,
Kopczyński
,
M.
,
Janusz
,
M.
,
Iluk
,
A.
, and
Zuwała
,
J.
,
2017
, “
Combustion Properties of Torrefied Biomass Obtained From Flue Gas-Enhanced Reactor
,”
Energy
,
119
(
Jan.
), pp.
362
368
. 10.1016/j.energy.2016.12.079
42.
Visser
,
H. J.
,
van Lith
,
S. C.
, and
Kiel
,
J. H.
,
2008
, “
Biomass Ash-Bed Material Interactions Leading to Agglomeration in FBC
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
011801
. 10.1115/1.2824247
43.
Selvakumaran
,
P.
, and
Bakthavatsalam
,
A. K.
,
2015
, “
Effect of Chemical Composition of Ash on Sintering of Lignites in Circulating Fluid Bed Combustion and Successful Operation of Large CFBC Boilers
,”
Appl. Therm. Eng.
,
85
(
June
), pp.
135
147
. 10.1016/j.applthermaleng.2015.03.007
44.
Scala
,
F.
,
2018
, “
Particle Agglomeration During Fluidized Bed Combustion: Mechanisms, Early Detection and Possible Countermeasures
,”
Fuel Process. Technol.
,
171
(
Mar.
), pp.
31
38
. 10.1016/j.fuproc.2017.11.001
45.
Korbee
,
R.
,
van Ommen
,
J. R.
,
Lensselink
,
J.
,
Nijenhuis
,
J.
,
Kiel
,
J. H.
, and
van den Bleek
,
C. M.
,
2006
, “
Early Agglomeration Recognition System (EARS)
,”
ASME J. Energy Resour. Technol.
,
128
(
2
), pp.
143
149
. 10.1115/1.2191505
46.
Khan
,
A. A.
,
de Jong
,
W.
,
Jansens
,
P. J.
, and
Spliethoff
,
H.
,
2009
, “
Biomass Combustion in Fluidized Bed Boilers: Potential Problems and Remedies
,”
Fuel Process. Technol.
,
90
(
1
), pp.
21
50
. 10.1016/j.fuproc.2008.07.012
47.
Gatternig
,
B.
, and
Karl
,
J.
,
2015
, “
Prediction of Ash-Induced Agglomeration in Biomass-Fired Fluidized Beds by an Advanced Regression-Based Approach
,”
Fuel
,
161
(
Dec.
), pp.
157
167
. 10.1016/j.fuel.2015.08.040
48.
Chaivatamaset
,
P.
,
Sricharoon
,
P.
,
Tia
,
S.
, and
Bilitewski
,
B.
,
2013
, “
A Prediction of Defluidization Time in Biomass Fired Fluidized Bed Combustion
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
722
731
. 10.1016/j.applthermaleng.2012.08.019
49.
Garcia-Maraver
,
A.
,
Mata-Sanchez
,
J.
,
Carpio
,
M.
, and
Perez-Jimenez
,
J. A.
,
2017
, “
Critical Review of Predictive Coefficients for Biomass Ash Deposition Tendency
,”
J. Energy Inst.
,
90
(
2
), pp.
214
228
. 10.1016/j.joei.2016.02.002
50.
Pronobis
,
M.
,
2005
, “
Evaluation of the Influence of Biomass Co-Combustion on Boiler Furnace Slagging by Means of Fusibility Correlations
,”
Biomass Bioenergy
,
28
(
4
), pp.
375
383
. 10.1016/j.biombioe.2004.11.003
51.
Zhu
,
Y.
,
Tan
,
H.
,
Niu
,
Y.
, and
Wang
,
X.
,
2018
, “
Experimental Study on Ash Fusion Characteristics and Slagging Potential Using Simulated Biomass Ashes
,”
J. Energy Inst.
(in press) https://doi.org/10.1016/j.joei.2018.11.005.
52.
Qi
,
Y.
,
Ji
,
S.
,
Wang
,
M.
,
Ge
,
P.
,
Ma
,
R.
, and
Wu
,
J.
,
2018
, “
Experimental Study of the High-Temperature Slagging Characteristics of Coal Ash-Biomass Ash Blends Under Different Atmospheres
,”
J. Energy Inst.
(in press) https://doi.org/10.1016/j.joei.2018.11.003.
53.
Zeng
,
T.
,
Pollex
,
A.
,
Weller
,
N.
,
Lenz
,
V.
, and
Nelles
,
M.
,
2018
, “
Blended Biomass Pellets as Fuel for Small Scale Combustion Appliances: Effect of Blending on Slag Formation in the Bottom Ash and Pre-Evaluation Options
,”
Fuel
,
212
(
Jan.
), pp.
108
116
. 10.1016/j.fuel.2017.10.036
54.
Davidsson
,
K. O.
,
Åmand
,
L. E.
,
Steenari
,
B. M.
,
Elled
,
A. L.
,
Eskilsson
,
D.
, and
Leckner
,
B.
,
2008
, “
Countermeasures Against Alkali-Related Problems During Combustion of Biomass in a Circulating Fluidized Bed Boiler
,”
Chem. Eng. Sci.
,
63
(
21
), pp.
5314
5329
. 10.1016/j.ces.2008.07.012
You do not currently have access to this content.